The Smoulder Stream of Cigarettes / Zur Kenntnis des Glimmstromes von Cigaretten

Author(s):  
F. Seehofer ◽  
W. Schulz

AbstractThe phenomenon of the smoulder stream flowing through the cigarette during smouldering and during the puff intervals is demonstrated for the first time and its dependence upon physical conditions is examined. The volume of the smoulder stream can amount up to 180 ml per cigarette. Increasing draw resistance of the cigarette and augmenting moisture content of the tobacco as well as perforation of the cigarette paper have a decreasing effect on volume and velocity of the smoulder stream. The porosity of the cigarette paper has no perceptible influence. The spatial position of the cigarette affects volume and velocity of the smoulder stream. The influence exercised by the smoulder stream on the yields of total condensate, nicotine, phenols, aldehydes, and acroleine when the cigarette tip is open during the puff intervals is determined. When the moisture contents of the tobacco were extremely high, yield decreases reaching 50 % could be observed.

2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SHIPRA SINGH

The present study has been designed to investigate the effect of solid substrates and moisture contents on the production of extra cellular lipase enzyme. High yield of enzyme activity 281.70 U/gss was obtained with rice bran and minimum activity 162.37 U/gss was observed with coconut cake. In such case of moisture content maximum lipase production was obtained 365.00 U/gss with 5ml moistening whereas minimum was obtained at 3ml moistening solid substrate. The study will be helpful in defining moisture content and solid substrate for higher production of lipase which are helpful in industries for commercial applications


Soil Research ◽  
1966 ◽  
Vol 4 (2) ◽  
pp. 103 ◽  
Author(s):  
DS McIntyre

Platinum microelectrode currents were measured in glass beads and two soils each at two different moisture contents. Diffusivity was kept constant for each soil at each moisture content but oxygen content was varied by changing the composition of the aerating gas. Results showed that current was strongly dependent on voltage; no plateau appeared in the current-voltage curves, but when comparison was made at constant effective voltage, rather than at constant applied voltage, a linear relation existed between current and oxygen concentration up to 21%. Electrical resistance of the soil was measured to allow comparison at constant effective voltage. Oxygen flux calculated at constant effective voltage, unlike that at constant applied voltage, is characteristic of soil aeration conditions irrespective of other physical properties, provided the moisture content of the soil is sufficiently high for satisfactory operation of the method.


2019 ◽  
Author(s):  
Caleb Karmel ◽  
Zhewei Chen ◽  
John Hartwig

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]<sub>2</sub> and 2,9-Me<sub>2</sub>-phenanthroline (2,9-Me<sub>2</sub>phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H<sub>2</sub> byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me<sub>2</sub>phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me<sub>2</sub>phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 420
Author(s):  
Yi Ma ◽  
Liu Cui ◽  
Meng Wang ◽  
Qiuli Sun ◽  
Kaisheng Liu ◽  
...  

Bacterial ghosts (BGs) are empty cell envelopes possessing native extracellular structures without a cytoplasm and genetic materials. BGs are proposed to have significant prospects in biomedical research as vaccines or delivery carriers. The applications of BGs are often limited by inefficient bacterial lysis and a low yield. To solve these problems, we compared the lysis efficiency of the wild-type protein E (EW) from phage ΦX174 and the screened mutant protein E (EM) in the Escherichia coli BL21(DE3) strain. The results show that the lysis efficiency mediated by protein EM was improved. The implementation of the pLysS plasmid allowed nearly 100% lysis efficiency, with a high initial cell density as high as OD600 = 2.0, which was higher compared to the commonly used BG preparation method. The results of Western blot analysis and immunofluorescence indicate that the expression level of protein EM was significantly higher than that of the non-pLysS plasmid. High-quality BGs were observed by SEM and TEM. To verify the applicability of this method in other bacteria, the T7 RNA polymerase expression system was successfully constructed in Salmonella enterica (S. Enterica, SE). A pET vector containing EM and pLysS were introduced to obtain high-quality SE ghosts which could provide efficient protection for humans and animals. This paper describes a novel and commonly used method to produce high-quality BGs on a large scale for the first time.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Hyeon W. Park ◽  
Jae W. Park ◽  
Won B. Yoon

AbstractNovel algorithm to determine the least cost formulation of a surimi blend was developed using linear programming (LP). Texture properties and the unit cost of surimi blend at the target moisture content were used as constraint functions and the objective function, respectively. The mathematical models to describe the moisture content dependence of the ring tensile properties were developed using critical moisture content, and the model parameters were used for the least cost LP (LCLP) model. The LCLP model successfully predicted the quality of surimi blend. Sensitivity analysis was used to obtain an additional information when the perturbations of design variables are provided. A standard procedure to determine the least cost formulation for blending surimi with varied moisture contents was systematically developed.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Gui-chen Li ◽  
Chong-chong Qi ◽  
Yuan-tian Sun ◽  
Xiao-lin Tang ◽  
Bao-quan Hou

The kinetics of fluid-solid coupling during immersion is an important topic of investigation in rock engineering. Two rock types, sandstone and mudstone, are selected in this work to study the correlation between the softening characteristics of the rocks and moisture content. This is achieved through detailed studies using scanning electron microscopy, shear tests, and evaluation of rock index properties during exposure to different moisture contents. An underground roadway excavation is simulated by dynamic finite element modeling to analyze the effect of moisture content on the stability of the roadway. The results show that moisture content has a significant effect on shear properties reduction of both sandstone and mudstone, which must thus be considered in mining or excavation processes. Specifically, it is found that the number, area, and diameter of micropores, as well as surface porosity, increase with increasing moisture content. Additionally, stress concentration is negatively correlated with moisture content, while the influenced area and vertical displacement are positively correlated with moisture content. These findings may provide useful input for the design of underground roadways.


2013 ◽  
Vol 807-809 ◽  
pp. 1648-1652
Author(s):  
Tie Jun Sun ◽  
Baderihu Tajilake

Experiment was executed to plant eco-grass of Bromus inermis Leyss on 15°bare slopes, and study effect of biological characters on dynamics of soil moisture contents. The results indicated that vegetation restored quickly on the bare slope after the eco-grass planted. There were 2473.4 kg/hm2 of overground biomass and 1744.1kg/hm2 of underground biomass, and 70% of underground biomass was in 0-10cm layer of soil. Meanwhile, there was a regulatory mechanism of soil moisture content for Bromus inermis Leyss. When rainfall was enough, soil moisture content in 0-80 cm layer could reach to the most of 26.83% quickly this year. Next it could decline near to the first value of 19.81% after rainfall stopped, and keep a dynamic balance between 19.48% and 19.96%. Moreover, the regulatory mechanism realized though underground biomass, and was clearer with underground biomass increasing, especially in the 0-40cm layer of soil.


Author(s):  
Julie Paprocki ◽  
Nina Stark ◽  
Hans C Graber ◽  
Heidi Wadman ◽  
Jesse E McNinch

A framework for estimating moisture content from satellite-based multispectral imagery of sandy beaches was tested under various site conditions and sensors. It utilizes the reflectance of dry soil and an empirical factor c relating reflectance and moisture content for specific sediment. Here, c was derived two ways: first, from in-situ measurements of moisture content and average NIR image reflectance; and second, from laboratory-based measurements of moisture content and spectrometer reflectance. The proposed method was tested at four sandy beaches: Duck, North Carolina, and Cannon Beach, Ocean Cape, and Point Carrew, Yakutat, Alaska. Both measured and estimated moisture content profiles were impacted by site geomorphology. For profiles with uniform slopes, moisture contents ranged from 3.0%-8.0% (Zone 1) and from 8.0%-23.0% (Zone 2). Compared to field measurements, the moisture contents estimated using c calibrated from in-situ and laboratory data resulted in percent error of 3.6%-44.7% and 2.7%-58.6%, respectively. The highest percent error occurred at the transition from Zone 1 to Zone 2. Generally, moisture contents were overestimated in Zone 1 and underestimated in Zone 2, but followed the expected trends based on field measurements. When estimated moisture contents in Zone 1 exceeded 10%, surface roughness, debris, geomorphology, and weather conditions were considered.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6680-6695
Author(s):  
Xiwen Wei ◽  
Liping Sun ◽  
Hongjv Zhou ◽  
Yang Yang ◽  
Yifan Wang ◽  
...  

Based on the effects of stress wave propagation in larch (Larix gmelinii) wood, the propagation mechanism of stress wave was explored, and a theoretical model of the propagation velocity of stress waves in the three-dimensional space of wood was developed. The cross and longitudinal propagation velocities of stress wave were measured in larch wood under different moisture contents (46% to 87%, 56% to 96%, 20% to 62%, and 11% to 30%) in a laboratory setting. The relationships between the propagation velocity of stress waves and the direction angle or chord angle with different moisture contents were analyzed, and the three-dimensional regression models among four parameters were established. The analysis results indicated that under the same moisture content, stress wave velocity increased as the direction angle increased and decreased as chord angle increased, and the radial velocity was the largest. Under different moisture contents, stress wave velocity gradually decreased as moisture content increased, and the stress wave velocity was more noticeably affected by moisture content when moisture content was below the fiber saturation point (FSP, 30%). The nonlinear regression models of the direction angle, chord angle, moisture content, and the propagation velocity of stress wave fit the experiment data well (R2 ≥ 0.97).


Sign in / Sign up

Export Citation Format

Share Document