scholarly journals Addition of buttermilk powder to yogurt: effects on particle size, microstructure and texture

2021 ◽  
Vol 10 (11) ◽  
pp. e154101119404
Author(s):  
Elisângela Ramieres Gomes ◽  
Mariana Braga de Oliveira ◽  
Isis Rodrigues Toledo Renhe ◽  
Rodrigo Stephani ◽  
Antônio Fernandes de Carvalho ◽  
...  

The addition of buttermilk powder as partial fat replacer in yogurt formulations with constant dry matter was investigated. Three formulations of yogurt were produced containing 0% (T1), 1.36% w·w-1 (T2) and 3.34% w·w-1 (T3) of buttermilk powder in the final product. Particle size and pH variation were monitored during fermentation; scanning electron microscopy and texture profile analysis were performed in the final product. The control sample showed larger particle size on the day after production and at the end of fermentation, as well as a more compact network microstructure with a smaller average pore size. Compared to the prototypes with added buttermilk the control sample showed greater higher firmness. Buttermilk powder could act as fat replacer for yogurt but favors the formation of a less compacted network microstructure, with large pores, less springiness after 21 days, and less hardness in the two evaluated times (21 and 42 days).

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 560
Author(s):  
Allah Bakhsh ◽  
Se-Jin Lee ◽  
Eun-Yeong Lee ◽  
Nahar Sabikun ◽  
Young-Hwa Hwang ◽  
...  

This study assessed the effects of Methylcellulose (MC) at different concentrations on plant-based meat analog (PBMA) patties, comprised of commercial texture vegetable protein (C-TVP) and textured isolate soy protein (T-ISP) as key ingredients, and compared to beef patty control. A significantly higher difference was observed in moisture content in control with increasing MC concentration than the C-TVP and T-ISP patties. However, protein varied significantly among three different protein sources, with control had higher protein content than PBMA patties. Crude fiber content recorded higher values in C-TVP as compared to control. Significantly lower pH values were recorded in control than C-TVP and T-ISP respectively. Regardless, with the addition of MC or ingredient PBMA and control patties tend to reduce lightness (L*) and redness (a*) value after cooking. Although control sample before cooking exhibits lighter and redder than PBMA patties (C-TVP and T-ISP). Likewise, water holding capacity (WHC) decreases as the concentration of MC increases (1.5–4%) in control and PBMA patties. Warner-Bratzler shear force (WBSF) and texture profile analysis (TPA), including hardness, chewiness, and gumminess of control, were significantly higher than C-TVP and T-ISP. Consequently, panelists’ in the sensory analysis presented that C-TVP patties containing 3% of MC had better sensory properties than T-ISP. Hence, PBMA patties with C-TVP and incorporation of 3% MC are considered ideal for manufacturing of meat analog as related to control (beef).


2016 ◽  
Vol 694 ◽  
pp. 34-38
Author(s):  
Zaleha Mustafa ◽  
Zurina Shamsudin ◽  
Radzali Othman ◽  
Nur Fashiha Sapari ◽  
Jariah Mohd Juoi ◽  
...  

Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass; ball clay and charcoal powder were fired to temperature of 850 °C as an effort for recycling waste glass. Various carbon contents, i.e., 1, 5, 10, 20 and 30 wt.% C were used to evaluate the effect of carbon contents on the hardness and thermal properties of glass composites. In addition, five different particles size (d0.5) of 1, 5, 20, 40 and 75 μm were used to observe the influence of particle size on the physical and mechanical properties of the glass composites. Phase analysis studies revealed the presence of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the optimised properties is at 1 wt.% of carbon content containing average pore size of 10 μm, with lowest porosity percentage of 1.76 %, highest Vickers microhardness of 4.6 GPa and minimum CTE. The percentage of porosity and hardness value also increased with reduction in carbon particle size.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Xuyang Shi ◽  
Wei Zhou ◽  
Qingxiang Cai ◽  
Xiang Lu

Seepage mutation of fractured rock mass is one of the main inducements of dump slide and other disasters. Pore structure is a significant factor affecting the seepage characteristics of fractured rock mass, while particle size gradation has an important effect on the distribution of pore structure. Through the self-developed experimental system, the nonlinear seepage test on the fractured sandstones of the coalseam roof was conducted to investigate the influence of seepage pressure, porosity, and fractal dimension. Besides, the nonlinear seepage model was established by Barree–Conway theory. The results showed that, during the seepage process of fractured sandstone, there were significant nonlinear characteristics, which increased with the increase of the seepage pressure. With the increasing porosity, there was greater average pore size of fractured sandstone, stronger permeability, and weaker nonlinear seepage. The seepage characteristics approximated to that of Darcy model. However, with increasing grading fractal dimension, there were smaller average pore size of fractured sandstone, weaker permeability, and stronger nonlinear seepage. The seepage characteristics approximated to that of Forchheimer model.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pradeep Kumar Singh ◽  
Satyavir Singh Ahlawat ◽  
Diwakar Prakash Sharma ◽  
Gauri Jairath ◽  
Ashok Kumar Pathera ◽  
...  

Purpose The purpose of this study was to optimize meat slices for processing attributes to produce better sensory features in developed products from buffalo veal and chevon. The processing parameters such as meat particle size, fat content and binding ability without chopping were the subject of this study. Design/methodology/approach The study involved three experiments where the particle size, fat content and tumbling time were optimized for optimum binding and improvement in different sensory attributes of product followed by physico-chemical analysis. Findings The sensory scores clearly indicated that meat slices prepared from 3 mm meat particle size, 10% fat content and 1 h tumbling time were having best sensory features. The selected product was analyzed for different physico-chemical properties. Emulsion stability and cooking yield revealed significantly (p = 0.01) higher values of 91.6% and 89.7%, respectively, in buffalo veal than in values of 87.6% and 84.9%, respectively, in the chevon product. Similarly the results showed that buffalo veal slices had significantly (p = 0.01) higher (17.4%) protein than the chevon (15.2%), whereas chevon slices had significantly (p = 0.01) higher (10.3%) fat content. The texture profile analysis indicated that cohesiveness (p = 0.01) and chewiness (p = 0.05) were significantly higher in chevon product than in buffalo veal. Originality/value The study was conducted to explore the buffalo veal as a potential source of quality meat, as majority of buffalo meat produced in India from spent animals have compromised quality attributes. The comparison was done with chevon, the most popular red meat in the country for the comparative study.


2013 ◽  
Vol 690-693 ◽  
pp. 409-414
Author(s):  
Kui Fan Su ◽  
Li Ming Wang ◽  
Xiang Yun Deng ◽  
Jian Bao Li ◽  
Chun Peng Wang ◽  
...  

Silicon carbide ceramic composite filter membrane materials were prepared by dry pressure molding and synchronous sintering process at sintering temperature of 1300oC for 3h. and research the influence of on the molding pressure structure of SiC filtration membrane,effect of particle size on porosity, average pore size and filter pressure drop of filtration membrane, SEM was performed to examine the morphology, The porosity ,average pore size and filter pressure drop of filtration membrane were tested by Archimedes method ,bubble point method and filter pressure drop instrument. It is demonstrated that while the molding pressure (F) varied from 1MPa to 10MPa, the filter membrane material achieved preferable morphology and best performance when F equals to 5MPa. Under this modeling pressure, while silicon carbide particle size increased from 1 to 23μm, the pore ratio decreased from 48.0% to 36.2% and the average pore size increased from 0.35μm to 9.4μm, while the air gas velocity changed from 0 to 0.112m/s, the filter pressure drop increased, when the velocity is stable, the filter pressure drop reduced as the silicon carbide particle size.


Author(s):  
Somayeh Sanjari ◽  
Hamid Sarhadi ◽  
Fatemeh Shahdadi

Background: Spirulina platensis is a photosynthetic microalgae with fibrous filamentous that belongs to the cyanobacteria family. In this study, we investigated the effects of ethanol and methanol extracts as well as the powder of spirulina platensis microelements on the sensory and texture properties of the bread. Methods: In order to determine the texture characteristics, we applied a texture analyser and conducted the Texture Profile Analysis test (Double-Density Compression). Sensory evaluation (hedonic scale 1−5) of the samples was performed by 10 trained panelists. Results: The results showed that use of spirulina microalgae in the formulation of bread altered the tissue properties significantly compared with the control sample. Addition of the spirulina decreased the hardness of the bread compared to the control sample. Moreover, addition of the methanol extract resulted in the highest adhesiveness, while addition of ethanol extract and spirulina microalgae powder led to the highest springiness rate among the samples. The highest and lowest amounts of gumminess were observed in bread samples containing spirulina microalgae powder and control treatments, respectively. The control sample received the highest score regarding all of the sensory features. Samples with spirulina powder received the lowest sensory properties. Conclusion: We can produce spirulina fortified bread with desirable nutritional and sensory characteristics.


2011 ◽  
Vol 356-360 ◽  
pp. 1664-1667 ◽  
Author(s):  
Jiang Wu ◽  
Peng Wang ◽  
Lu Lu He ◽  
Wei Guo Pan ◽  
Jian Xing Ren ◽  
...  

In this paper, fly ash samples were collected from a coal-fired power in Shanghai. A series of experiments, including unburned carbon testing, mercury content measurement, SEM analysis, specific surface area, average pore size and pore volume test, were conducted, and the adsorption ability of the fly ash on the flue gas mercury was also experimentally studied. It has shown that fly ash with particle size bigger than 100µm is with the highest adsorption efficiency, 67.83%, and that fly ash with particle size smaller than 25µm is with the smallest adsorption efficiency, 13.67%. The relative mechanism was analyzed.


Author(s):  
A. T. Sarsembekova ◽  
M. Korzeniowska ◽  
Ya. M. Uzakov ◽  
Zh. S. Zheleuova

Various amounts of buckwheat hulls (1%, 1,5%, and 3%) were added to cooked turkey sausages. The effect of buckwheat hulls on the physicochemical characteristics of the cooked turkey sausages, including, pH, instrumental color, texture profile analysis (TPA), antioxidant content and sensory evaluation, were determined. Increased levels of added buckwheat hulls led to higher antioxidant activity. However, the protein and fat contents of the cooked turkey sausage samples were constant. The instrumental color in control sample were L*=65,1, a*=5,6, and b*=9,8. There were slight differences in the TPA among the treated samples. According to the results of the sensory and objective assessment of consumer properties, it can be argued that sample F1 with the introduction of buckwheat hulls 3,0% had a negative effect on sensory properties of cooked turkey sausages. The best marks were given to the sample  F1 with the introduction of buckwheat hulls 1,0% on sensory evaluation.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


2006 ◽  
Vol 514-516 ◽  
pp. 1005-1009 ◽  
Author(s):  
José V. Araújo ◽  
J.A. Lopes da Silva ◽  
Margarida M. Almeida ◽  
Maria Elisabete V. Costa

Porous chitosan/brushite composite scaffolds were prepared by a freeze-drying technique, starting from brushite suspensions in chitosan solutions. The obtained scaffolds showed a regular macroporous and interconnected structure with brushite particles uniformly distributed in the chitosan matrix. The variation of the brushite concentration affected the microstructure of the final freeze-dried scaffold, in particular, its porosity and its average pore size. The yield strengths of the composite scaffolds could also be improved by the increase of the brushite content.


Sign in / Sign up

Export Citation Format

Share Document