scholarly journals Effect of the incorporation of sugarcane bagasse fibers in asphalt mixture dosed by the Superpave method

2021 ◽  
Vol 10 (13) ◽  
pp. e80101320878
Author(s):  
Ana Maria Gonçalves Duarte Mendonça ◽  
Osires de Medeiros Melo Neto ◽  
John Kennedy Guedes Rodrigues ◽  
Robson Kel Batista de Lima ◽  
Ingridy Minervina Silva ◽  
...  

Sugar industry waste bagasse contains many natural fiber materials, and the application of natural fibers in asphalt mixes such as SMA (Stone Matrix Asphalt) has become an attractive alternative for the construction of flexible pavements. This study aims to evaluate the mechanical performance of an asphalt mixture modified by incorporating 0.3% sugarcane bagasse fiber and with a size of 20 mm. The asphalt binder was submitted to penetration, softening point, and rotational viscosity tests to carry out this research, and the aggregates were characterized by specific mass, particle size, and absorption tests. Furthermore, the Superpave dosage was performed to produce the specimens to be evaluated in the splitting tensile strength test, resilient modulus, Marshall stability, and draindown sensitivity. As a result, the modified asphalt mixture presented a better performance in all evaluated strength tests and the leakage content within the standard specifications. Therefore, according to this, re-search, sugarcane bagasse fibers proved to be a viable alternative for SMA-type mixtures. Thus, the application of this material in asphalt paving and improving some essential characteristics can significantly reduce the environmental impacts generated by the inadequate disposal of these residues by sugar mills.

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Asphalt pavement is typically susceptible to moisture damage. However, it could be improved with the incorporation of additives or modifiers through binder modifications. The objective of the study is to assess the effect of adhesion promoters, namely PBL and M5000, onto the Hot Mix Asphalt (HMA). The performance of asphalt mixture has been assessed in terms of the service characteristics, the bonding properties, and mechanical performances. The service characteristics were assessed through the Workability Index (WI) and Compaction Energy Index (CEI) to evaluate the ease of asphalt mixture during the mixing and compaction stage. The bonding properties of the modified asphalt mixtures were determined using the boiling water test and static water immersion test to signify the degree of coating after undergoing specific conditioning period and temperature. The mechanical performances of the modified asphalt mixture were evaluated via Marshall stability, semi-circular bending, and modified Lottman tests. All specimens were prepared by incorporating adhesion promoters at the dosage rates of 0.5% and 1.0% by weight of asphalt binder. From the investigation, the bonding properties significantly improved for the modified asphalt mixture compared to the control mixture. The WI of the modified asphalt mixture increased while the CEI decreased in comparison to the control specimen. This implies the workability of modified asphalt mixture is better and requires less energy to be compacted. Modified asphalt mixture generally had better mechanical performance. Therefore, it can be deduced that the asphalt mixture with adhesion promoters have better overall performance than the control mixture.


Author(s):  
Jamilla Emi Sudo Lutif Teixeira ◽  
Aecio Guilherme Schumacher ◽  
Patrício Moreira Pires ◽  
Verônica Teixeira Franco Castelo Branco ◽  
Henrique Barbosa Martins

The influence of steel slag expansion level on the early stage performance of hot mix asphalt (HMA) is evaluated. Initially, samples of Linz-Donawitz type steel slag with different levels of expansion (6.71%, 3.16%, 1.33%) were submitted to physical, mechanical, and morphological characterization to assess the effects of expansion on individual material properties. Steel slag was then used as aggregate in HMA to verify the effects of its expansion characteristics on the volumetric and mechanical performance of the asphalt mixture. Four different asphalt mixtures were designed based on Marshall mix design, using asphalt cement (pen. grade 50/70), natural aggregate (granite), and steel slag (in three different levels of expansion). The mechanical characteristics of the asphalt mixture were evaluated based on results from Marshall stability, indirect tensile strength, and resilient modulus testing. A modified Pennsylvania testing method (PTM) was also performed on the studied asphalt mixtures to verify the potential of asphalt binder film to minimize the expansive reactions of steel slag. It was observed that the level of steel slag expansion changes some of the material’s individual properties, which can affect the volumetric parameters of the mix design. The use of steel slag as aggregate in HMA also improves the mechanical properties of non-aged asphalt mixtures. Moreover, the expansive characteristics of this material could be minimized when combined with other asphalt mixture components.


2005 ◽  
Vol 297-300 ◽  
pp. 213-218 ◽  
Author(s):  
Yang Bae Jeon ◽  
Do Won Seo ◽  
Jae Kyoo Lim

Using natural fibers that are inexpensive, lightweight and biodegradable, as the reinforcement for composites is difficult due to their poor interfacial properties between hydrophilic fiber and hydrophobic polymer matrices. It is necessary to evaluate fracture toughness of natural fiber reinforced composites according to water absorption rates to improve mechanical performance of those. In this study, compact tension fracture test was conducted to evaluate fracture toughness with the various specimens. The value of fracture toughness has the tendency to decrease as water absorption rate increases. And different surface treatment methods and different polymer matrices have influence on the value of fracture toughness.


2021 ◽  
Vol 16 ◽  
pp. 155892502110448
Author(s):  
Santhanam Sakthivel ◽  
Selvaraj Senthil Kumar ◽  
Eshetu Solomon ◽  
Gedamnesh Getahun ◽  
Yohaness Admassu ◽  
...  

This research paper reports a study on thermal and sound insulation samples developed from sugarcane bagasse and bamboo charcoal for automotive industry applications. The sugarcane bagasse and bamboo charcoal fiber is a potential source of raw material that can be considered for thermal and sound insulation applications. Natural fibers are commonly used in diverse applications and one of the most important applications is sound absorption. Natural fiber hybrid composite currently is in greater demand in industries because of their advantages such as low cost, biodegradability, acceptable physical properties, and so on. Eco-friendly sound-absorbing composite materials have been developed using bamboo charcoal and sugarcane bagasse fibers. From these fibers five types of natural fiber green composite were developed using the compression bonding technique. The natural composite noise control performance contributes to its wider adoption as sound absorbers. The sound absorption coefficient was measured according to ASTM E 1050 by the Impedance tube method. The physical properties of natural fiber composites such as thickness, density, porosity, air permeability, and thermal conductivity were analyzed for all samples in accordance with ASTM Standard. The result exposed that natural fiber green composite were absorbing the sound resistance of more than 70% and the natural fibers composites provide the best acoustic absorption properties, these composite materials have adequate moisture resistance at high humidity conditions without affecting the insulation and acoustic properties.


2012 ◽  
Vol 5 ◽  
pp. 259-264 ◽  
Author(s):  
Shang Jiang Chen ◽  
Xiao Ning Zhang

Nanomaterials (nano powdered rubber VP401, VP501 and sepiolite and CaCo3 composites) were selected to improve the high-temperature and low-temperature performance of asphalt binder. Nanomaterial modified asphalt was prepared using the high shear machine. Laboratory experiments of asphalt binder and asphalt mixture were conducted to evaluate the properties of modified asphalt binder, including the penetration, ductility, softening point, viscosity, and etc. Also, asphalt mixture tests were carried out, such as the cleavage strength test, resilient modulus test, rutting test, water stability test and etc. Based on the test results, asphalt binder modified by 1% nano powdered rubber VP401 has better performance resistance to low temperature crack and rutting, compared to other nanomaterial modified asphalt binder.


2001 ◽  
Vol 702 ◽  
Author(s):  
Prabhu Kandachar ◽  
Rik Brouwer

ABSTRACTAvailable as agricultural resources in many countries, natural fibers, such as flax, hemp, kenaf, exhibit mechanical properties comparable to those of synthetic fibers like glass. But they are lighter, biodegradable, and are often claimed to be less expensive. Composites with these natural fibers have the potential to be attractive alternative to synthetic fiber composites. The natural fibers, however, exhibit more scatter in their properties, are thermally less stable and are sensitive to moisture absorption. The choice of matrix to reinforce with these fibers therefore becomes critical.Currently, synthetic non-biodegradable polymers, such as polypropylene, polyester, etc., are being explored as matrix materials, for applications in sectors like automobiles and buildings. Biodegradable polymers, if made available in sufficient quantities at affordable prices, pave way for bio-composites in future. With both matrix and fibers being biodegradable, bio-composites become attractive candidates from the environment point of view.Extensive and reliable property data on natural fiber composites and/or on bio-composites, are still lacking, making product design with these materials rather tedious. Once the database is available, design & manufacture of products with natural fiber composites and biocomposites offer several opportunities and challenges.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1266
Author(s):  
Wentong Huang ◽  
Xiao Liu ◽  
Shaowei Zhang ◽  
Yu Zheng ◽  
Qile Ding ◽  
...  

The construction of sponge city is a major green innovation to implement the concept of sustainable development. In this study, the road performance of permeable asphalt concrete (PAC), which displays pronounced water permeability and noise reduction that are favorable for sponge cities, has been improved with a two-fold modification using styrene–butadiene–styrene (SBS) and crumb rubber (CR). Four percent SBS and three different ratios (10%, 15%, and 20%) of CR have been used to modify the virgin asphalt binder. The Marshall design has been followed to produce PAC samples. To evaluate the asphalt binder performance, multiple-stress creep-recovery (MSCR) test, linear amplitude sweep (LAS) test, and engineering property test programs including softening point test, penetration test, and rotational viscosity test have been conducted. Freeze–thaw splitting test, Hamburg wheel-tracking test, resilient modulus test, and permeability coefficient test have been performed to evaluate the asphalt mixture performance. The test results show that the addition of SBS and CR reduces the permeability coefficient, but significantly improves the high temperature performance, fatigue performance, and rutting resistance as well as the resilient modulus. However, the optimum rubber content should not exceed 15%. Meanwhile, after adding CR and SBS modifier, the indirect tensile strength (ITS) and tensile strength ratio (TSR) increase. It indicates that the moisture stability and crack resistance have been improved by the composite modification effect.


2021 ◽  
Vol 11 (10) ◽  
pp. 4409
Author(s):  
Daniel Alberto Zuluaga-Astudillo ◽  
Hugo Alexander Rondón-Quintana ◽  
Carlos Alfonso Zafra-Mejía

Hot-mix asphalts exposed to hot weather and high traffic volumes can display rutting distress. A material that can be used to increase the stiffness of asphalt binders is gilsonite. On the other hand, from an environmental point of view, the virgin natural aggregates of asphalt mixtures can be replaced with recycled concrete aggregates. For these reasons, this study modified the asphalt binder with gilsonite by wet-process to improve rutting resistance, and replaced (by mass and volume) part of the coarse fraction of the aggregate with recycled concrete aggregate in two hot-mix asphalts with different gradations. Unlike other studies, a larger experimental phase was used here. Marshall, indirect tensile strength, resilient modulus, permanent deformation, fatigue resistance, and Cantabro tests were performed. An ANOVA test was carried out. If the replacement of the virgin aggregate by recycled concrete aggregates was made by volume, both materials (gilsonite and recycled concrete aggregate) could be used in hot-mix asphalts for thick-asphalt layers in high temperature climates and any level of traffic. The use of both materials in hot-mix asphalts is not recommended for thin-asphalt layers in low temperatures climates. It is not advisable to replace the aggregates by mass.


Sign in / Sign up

Export Citation Format

Share Document