Expansion Level of Steel Slag Aggregate Effects on Both Material Properties and Asphalt Mixture Performance

Author(s):  
Jamilla Emi Sudo Lutif Teixeira ◽  
Aecio Guilherme Schumacher ◽  
Patrício Moreira Pires ◽  
Verônica Teixeira Franco Castelo Branco ◽  
Henrique Barbosa Martins

The influence of steel slag expansion level on the early stage performance of hot mix asphalt (HMA) is evaluated. Initially, samples of Linz-Donawitz type steel slag with different levels of expansion (6.71%, 3.16%, 1.33%) were submitted to physical, mechanical, and morphological characterization to assess the effects of expansion on individual material properties. Steel slag was then used as aggregate in HMA to verify the effects of its expansion characteristics on the volumetric and mechanical performance of the asphalt mixture. Four different asphalt mixtures were designed based on Marshall mix design, using asphalt cement (pen. grade 50/70), natural aggregate (granite), and steel slag (in three different levels of expansion). The mechanical characteristics of the asphalt mixture were evaluated based on results from Marshall stability, indirect tensile strength, and resilient modulus testing. A modified Pennsylvania testing method (PTM) was also performed on the studied asphalt mixtures to verify the potential of asphalt binder film to minimize the expansive reactions of steel slag. It was observed that the level of steel slag expansion changes some of the material’s individual properties, which can affect the volumetric parameters of the mix design. The use of steel slag as aggregate in HMA also improves the mechanical properties of non-aged asphalt mixtures. Moreover, the expansive characteristics of this material could be minimized when combined with other asphalt mixture components.

Asphalt pavement is typically susceptible to moisture damage. However, it could be improved with the incorporation of additives or modifiers through binder modifications. The objective of the study is to assess the effect of adhesion promoters, namely PBL and M5000, onto the Hot Mix Asphalt (HMA). The performance of asphalt mixture has been assessed in terms of the service characteristics, the bonding properties, and mechanical performances. The service characteristics were assessed through the Workability Index (WI) and Compaction Energy Index (CEI) to evaluate the ease of asphalt mixture during the mixing and compaction stage. The bonding properties of the modified asphalt mixtures were determined using the boiling water test and static water immersion test to signify the degree of coating after undergoing specific conditioning period and temperature. The mechanical performances of the modified asphalt mixture were evaluated via Marshall stability, semi-circular bending, and modified Lottman tests. All specimens were prepared by incorporating adhesion promoters at the dosage rates of 0.5% and 1.0% by weight of asphalt binder. From the investigation, the bonding properties significantly improved for the modified asphalt mixture compared to the control mixture. The WI of the modified asphalt mixture increased while the CEI decreased in comparison to the control specimen. This implies the workability of modified asphalt mixture is better and requires less energy to be compacted. Modified asphalt mixture generally had better mechanical performance. Therefore, it can be deduced that the asphalt mixture with adhesion promoters have better overall performance than the control mixture.


2020 ◽  
Vol 6 ◽  
pp. 42-60
Author(s):  
Abdalrhman Abrahim Milad ◽  
Ahmed Suliman B. Ali ◽  
Nur Izzi Md Yusoff

The possibility of using waste materials in road construction is of great interest as their utilisation may contribute to reducing the problems of hazard and pollution and conserve natural resources. Thus, there is an urgent need to find a sustainable method for using waste materials as a substitute in the standard asphalt binders. There are several concerns about the physical and chemical properties and mechanical performance of asphalt pavements incorporated with waste material in the effort to reduce permanent deformation of the road surface. This review article presents a brief discussion of the asphalt mixtures modified with waste material, and the recycled materials used as a modifier in the asphalt mixture. The present paper summarises the use of crumb rubber, crushed concrete, steel slag, glass fibre and plastic waste in asphalt mixtures. The use of waste materials as a modifier in asphalt mixture resulted in improved asphalt pavement performance. Results advocate that rubberised asphalt mixture with desired properties can be designed as an additive with a friendly environmental approach in construction materials. The researches that adopted the influence of usage, recycle waste material to improve the performance of the asphalt of the road are still limited compared to other construction fields. Doi: 10.28991/cej-2020-SP(EMCE)-05 Full Text: PDF


2019 ◽  
Vol 9 (18) ◽  
pp. 3657 ◽  
Author(s):  
João Crucho ◽  
Luís Picado-Santos ◽  
José Neves ◽  
Silvino Capitão

This review addresses the effects of the modifications with nanomaterials, particularly nanosilica, nanoclays, and nanoiron, on the mechanical performance and aging resistance of asphalt mixtures. The desire for high-performance and long-lasting asphalt pavements significantly pushed the modification of the conventional paving asphalt binders. To cope with such demand, the use of nanomaterials for the asphalt binder modification seems promising, as with a small amount of modification an important enhancement of the asphalt mixture mechanical performance can be attained. Several studies already evaluated the effects of the modifications with nanomaterials, mostly focusing on the asphalt binder properties and rheology, and the positive findings encouraged the study of modified asphalt mixtures. This review focuses on the effects attained in the mechanical properties of the asphalt mixtures, under fresh and aged conditions. Generally, the effects of each nanomaterial were evaluated with the current state-of-art tests for the characterization of mechanical performance of asphalt mixtures, such as, permanent deformation, stiffness modulus, fatigue resistance, indirect tensile strength, and Marshall stability. Aging indicators, as the aging sensitivity, were used to evaluate the effects in the asphalt mixture’s aging resistance. Finally, to present a better insight into the economic feasibility of the analyzed nanomaterials, a simple cost analysis is performed.


TRANSPORTES ◽  
2021 ◽  
Vol 29 (4) ◽  
pp. 2456
Author(s):  
Cássio Alberto Teoro Do Carmo ◽  
Géssica Soares Pereira ◽  
Geraldo Luciano de Oliveira Marques ◽  
Paulo Roberto Borges

The goal of this study was to analyze the structural sensitivity of a flexible pavement, whose asphalt layers underwent variations in its mechanical properties due to the asphalt binder content and the mix design method Marshall and Superpave. A variation of ±0.5% within the optimum asphalt binder contents was used (service tolerance) considering possible permissible variations in the asphalt binder content during the asphalt mixture manufacturing process. The values of resilient modulus and indirect tensile strength (Brazilian test) of the resulting asphalt mixtures were applied to the reference pavement structure analyzed by the me-PADS software. The results show that the variations in the asphalt binder content and the asphalt mixtures design method influence the mechanical properties and corresponding structural responses of the pavement investigated: the asphalt layers designed by the Marshall method presented greater sensitivity to the variation in asphalt binder content, which may constitute a technical differential of asphalt mixtures designed by the Superpave method.


2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


2021 ◽  
Vol 1023 ◽  
pp. 121-126
Author(s):  
Van Bach Le ◽  
Van Phuc Le

Although small amount of binder in asphalt concrete mixture may commonly range from 3.5 to 5.5% of total mixture as per many international specifications, it has a significant impact on the total cost of pavement construction. Therefore, this paper investigated the effects of five carbon nanotubes contents of 0.05%, 0.1%, 0.15%, 0.2%, 0.25% by asphalt weight as an additive material for binder on performance characteristics of asphalt mixtures. Performance properties of CNTs modified asphalt mixtures were investigated through the Marshall stability (MS) test, indirect tensile (IDT) test, static modulus (SM) test, wheel tracking (WT) test. The results indicated that asphalt mixtures with CNT modified binder can improve both the rutting performance, IDT strength and marshall stability of tested asphalt mixtures significantly at higher percentages of carbon nanotubes. However, the issue that should be considered is the construction cost of asphalt pavement. Based on the asphalt pavement structural analysis and construction cost, it can be concluded that an optimum CNT content of 0.1% by asphalt weight may be used as additive for asphalt binder in asphalt mixtures.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


Author(s):  
Ben C. Cox ◽  
Jonathan Easterling ◽  
W. Griffin Sullivan ◽  
Alex Middleton ◽  
Isaac L. Howard

In recent years, the asphalt paving industry has been strained by numerous factors including increased asphalt binder costs, funding that has not kept up with material costs, increased societal pressure to recycle, and deteriorating pavement networks. Mix design should account for the market in which it is used, which is very different now than when today’s volumetric mix design practices were developed (many of the aforementioned factors were less present). Given this reality, a statewide database of all 1,452 approved mix designs in Mississippi from 2005 to 2018 was compiled and analyzed, and the objective of this paper is to present findings, trends, and unintended consequences of exclusive reliance on volumetrics. With volumetrics-only mix design, asphalt content is primarily controlled by voids in mineral aggregate (VMA), which is influenced by aggregate bulk specific gravity (Gsb). Minor Gsb deviations (i.e., within AASHTO d2 s limits), can significantly affect VMA, so much so that 99% of Mississippi’s mixes could be failing VMA while reported VMA passes. This allows mix manipulation and economization, with 0.8% asphalt content reductions possible while still meeting volumetric requirements. Recycled materials can exacerbate this issue, and common approaches to increase asphalt content (decreasing design gyration level or using finer gradations) are ineffective with fixed VMA requirements. Overall, the mix design database analysis agrees with numerous smaller studies but does so with an entire state’s actual practice. This presents a compelling case that volumetrics-only mix design has limitations, and supports ongoing efforts to reintegrate mechanical tests.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


Sign in / Sign up

Export Citation Format

Share Document