Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex

2019 ◽  
Vol 11 (01) ◽  
pp. 33-40
Author(s):  
Pristiansyah Pristiansyah ◽  
Hasdiansah Hasdiansah ◽  
Sugiyarto Sugiyarto

Fused Deposition Modeling (FDM) is a 3D Printing technique used to print products using filaments as material. The printed product has ideal geometric characteristics if it has meticulous size and perfect shape. One type of material that can be processed using 3D Printing FDM is flexible material. Research in terms of dimensional accuracy has been carried out on PLA and ABS materials. While research using flexible materials is still rarely done. From these problems, we need a study to get the process parameter settings on a 3D Printer machine that is optimal in obtaining dimensional accuracy using flexible materials. The research was carried out using the Prusa model DIY (Do It Yourself) 3D machine with FDM technology. The material used is Eflex type flexible filament with a diameter of 1.75 mm. The process parameters used in this study are flowrate, layer thickness, temperature nozzle, speed printing, overlap, and fan speed. Cuboid test specimens measuring 20 mm × 20 mm × 20 mm. Process parameter optimization using the Taguchi L27 Orthogonal Array method for dimensional accuracy testing. Optimal process parameter values for obtaining X dimension accuracy are 110% flowrate, 0.10 mm layer thickness, 210 °C nozzle temperature, 40 mm/s print speed, 75% overlap, and 50% fan speed. Y dimension is 120% flowrate, layer thickness 0.20 mm, nozzle temperature 230 °C, print speed 30 mm/s, overlap 75%, and fan speed 100%. As well as the Z dimension is 120% flowrate, layer thickness 0.30 mm, nozzle temperature 210 °C, print speed 30 mm/s, overlap 50%, and fan speed 100%.

2021 ◽  
Vol 3 (1) ◽  
pp. 7-14
Author(s):  
Yulian Subakti ◽  
Hasdiansah - ◽  
Zaldy Kurniawan

Fused Deposition Modeling (FDM) is a technique of 3D Printing machines that is popularly used to print products. The printed product certainly has the ideal tensile strength characteristics if it has a precise size and good shape according to the standard. One of the materials that can be processed in a 3D printing machine is ST PLA. Research in terms of tensile testing has been carried out on PLA/ABS materials. However, tensile testing with annealing process using ST PLA filament is still very rarely done. From these problems, it is necessary to research to obtain optimal process parameters on 3D printing machines, to obtain the highest tensile strength from the annealing process using ST PLA material. This research was conducted using a 3D printer DIY Prusa model with a printing area of ​​XYZ, 300 mm x 300 mm x 350 mm. The material used is ST PLA filament with a diameter of 1.75 mm in green. The process parameters in this research are layer thickness, nozzle temperature and flow rate. For annealing media use beach sand, coffee and wheat. The shape of the test specimen follows the ASTM D638 type IV standard. As for the design of the process parameters using the Taguchi L9 method (33). The process parameter values ​​that produce the highest tensile strength without annealing are layer thickness 0.3 mm, nozzle temperature 205oC, and flow rate 100%. The annealing process parameters that produce the highest tensile strength are annealing time of 15 minutes, oven temperature of 110oC, for annealing media using coffee.


2021 ◽  
Vol 16 (3) ◽  
pp. 319
Author(s):  
Hasdiansah Hasdiansah ◽  
Sugiyarto Sugiyarto

<p>Teknologi FDM (<em>Fused Deposition Modelling</em>) merupakan salah satu teknologi yang digunakan untuk membuat objek 3D. FDM sering disebut sebagai teknologi yang sudah mampu mengubah dunia manufaktur dewasa ini. Namun teknologi FDM memiliki kelemahan karena teknologi ini menggunakan proses <em>building per layer </em>membuat permukaan yang dihasilkan terlihat memiliki garis yang menunjukan batas antar <em>layer </em>sehingga mempengaruhi kekasaran pada permukaan produk cetak.  Penelitian ini menggunakan filamen <em>Super Tough</em> PLA (ST.PLA). Tujuan penelitian ini adalah untuk mengetahui pengaruh parameter proses terhadap kekasaran permukaan objek cetak dan untuk mengetahui seting parameter proses yang menghasilkan kekasaran permukaan terbaik dari parameter proses yang digunakan. Penelitian ini menggunakan metode Taguchi dengan matriks ortogonal L<sub>25</sub>(5<sup>6</sup>).  Parameter proses yang akan dipilih dan dianalisis dalam penelitian ini adalah<em> layer thickness, printing speed, nozzle temperature, orientation, flowrate</em>, <em>cooling speed </em>dan respon yang diamati adalah kekasaran permukaan objek cetak. Untuk mengatasi permasalahan <em>noise</em> (gangguan) maka dicetak masing-masing tiga kali replikasi  Selanjutnya parameter proses tersebut akan dianalisis menggunakan Analisis Varian (ANOVA). Berdasarkan data  hasil pengukuran kekasaran permukaaan objek cetak,  maka diperoleh parameter proses yang memberikan pengaruh paling besar terhadap kekasaran permukaan objek cetak dengan menggunakan filamen ST-PLA adalah <em>layer thickness</em> dengan nilai F hitung sebesar 129,96, <em>flowrate</em> dengan nilai F hitung sebesar 6 dan <em>orientation</em> dengan nilai F hitung sebesar 3,03. Seting parameter proses yang menghasilkan nilai kekasaran permukaan terbaik objek cetak adalah 0,10 mm yaitu pada eksperimen nomor lima (Exp. No. 5) dengan rata-rata  12,61 µm, dengan pengaturan <em>layer thickness</em>, 45 mm/s pada pengaturan <em>printing speed</em>, 210˚C pada <em>nozzle temperature</em>, 0˚ pada <em>orientation</em>, 110% pada pengaturan <em>flowrate</em> dan 40% pada pengaturan <em>cooling speed</em>. Seluruh parameter proses tersebut disetting pada <em>slicing software</em> ideamaker 3.6.1. dalam menghasilkan G-Code objek cetak.</p>


2021 ◽  
Vol 16 (2) ◽  
pp. 140
Author(s):  
Hasdiansah Hasdiansah ◽  
Zaldy Sirwansyah Suzen

<p>Pengaturan parameter proses 3D <em>Printing </em>berteknologi <em>Fused Deposition Modelling</em> (FDM) sangat mempengaruhi kualitas produk cetak baik dalam hal akurasi dimensi, <em>surface roughness</em>, dan kekuatan tariknya. Dua material yang paling sering digunakan para praktisi 3D Printing adalah PLA dan ABS masih memerlukan pengaturan parameter proses pada <em>slicing software</em> untuk menghasilkan produk cetak paling kuat ditinjau dari kuat tariknya. Penelitian ini memvariasikan bentuk geometri <em>infill </em>yang tersedia pada Ultimaker Cura 4.8.0 dalam mencetak spesimen uji tarik ASTM D638 Type IV. Ada 13 (tiga belas) bentuk <em>infill </em>yang digunakan dengan <em>infill density</em> 100%. Ada 3 (tiga) variasi <em>nozzle temperature</em> yaitu 205°C, 215°C, dan 225°C. Parameter proses yang tetap seperti <em>layer thickness</em> 0,2 mm, <em>printing speed</em> 50 mm/s, <em>travel speed</em> 100 mm/s, dan <em>bed temperature</em> 60°C. Spesimen uji tarik dicetak masing-masing tiga buah pada 39 (tiga puluh sembilan) eksperimen dan rata-rata hasil uji tarik dihitung kemudian selanjutnya dianalisis. Nilai kekuatan tarik tertinggi diperoleh pada pengaturan <em>nozzle temperature</em> 205°C dengan bentuk <em>infill concentric</em> atau terdapat pada eksperimen nomor 9 dengan nilai 32,40 MPa. Sedangkan nilai kekuatan tarik diperoleh pada pengaturan <em>nozzle temperature</em> 225°C dan dengan bentuk <em>infill cross</em> atau pada eksperimen nomor 37 dengan nilai 19,10 MPa. Sehingga dapat disimpulkan bahwa bentuk geometri <em>infill </em>pada proses 3D <em>Printing </em>FDM sangat mempengaruhi kekuatan tarik produk cetak.</p>


2019 ◽  
Vol 26 (2) ◽  
pp. 288-298 ◽  
Author(s):  
Oğuzhan Emre Akbaş ◽  
Onur Hıra ◽  
Sahar Zhiani Hervan ◽  
Shahrad Samankan ◽  
Atakan Altınkaynak

Purpose This paper aims to analyze experimentally and numerically the effect of the nozzle temperature and feed rates on the dimensions of the fused deposition modeling (FDM) polymer parts. Design/methodology/approach In total, 30 strips per sample were printed with the same width as the nozzle diameter. The strips were printed with one vertical movement of the nozzle head. The width of the strips was measured with a caliper at five locations. A linear regression model was created based on the experimental data to understand the correlation between the strip width deviation and the parameters of interest. Numerical simulations were performed to predict the swell of the polymer exiting the nozzle using finite element method combined with level set method. The experimental results were then used to validate the models. Findings The average accuracy of polylactic acid (PLA) samples was better than that of acrylonitrile butadiene styrene (ABS) samples. The average strip width had a tendency to increase with increasing temperature for PLA samples, whereas ABS samples showed mixed behavior. The strip width decreased with increasing feed rate for most cases. The measurement positions had a major effect on strip width when compared to nozzle temperature and feed rate. The numerical model predictions were in good agreement with the experimental data. A few discrepancies were observed at high feed rates and nozzle temperatures. Originality/value This study will contribute to gaps in knowledge regarding the effect of processing conditions on dimensional accuracy of FDM-printed parts. The developed numerical model can be efficiently used to predict the dimensional accuracy of FDM-printed parts.


2021 ◽  
Vol 2 (8) ◽  
pp. 1480-1493
Author(s):  
Ilham Akbar ◽  
Zaldy Sirwansyah Suzen ◽  
Idiar Idiar

Pada era industri perkembangan teknologi pada saat ini telah mengalami kemajuan yang sangat pesat, salah satunya adalah teknologi 3D printing atau juga dikenal sebagai additive manufacturing. Salah satu teknologi 3D printing yang terkenal adalah Fused Deposition Modelling (FDM). Prinsip kerja FDM adalah dengan cara ekstrusi termoplastik melalui nozzle yang panas pada melting temperature selanjutnya produk dibuat lapis perlapis. Teknologi 3D printing adalah proses pembuatan benda padat dari sebuah file digital. Penelitian ini menggunakan metode eksperimen, dilakukan pada mesin 3D printing FDM model Prusa area dengan menggunakan nozzle 0,4mm. Material yang digunakan adalah filamen PLA+ dengan diameter 1,75mm variasi parameternya nozzle temperature (205oC, 215oC, 225oC), Cooling speed (100%, 90%, 80%), infill type (grid, lines, triangles, Tri hexagon, cubic, cubic subdivision, octet, quarter qubic, concentric, zigzag, cross, cross 3D dan gyroid). Penelitian ini menggunakan 39 sampel dengan tujuan untuk mengetahui hasil uji impak tertinggi dan terendah dengan pengujian impak dari parameter yang ditentukan yaitu orientasi printing 90o. Hasil dari pengujian impak tertinggi sebesar 0,00548 Joule/mm2 dengan ekperimen nomor 32 infill geometry (cubic Subdivision), cooling speed 80% dan nozzle temperature 225ºC. Sedangkan nilai uji impak terendah sebesar 0,00084 Joule/mm2 dengan ekperimen nomor 14 dan 17 infill geometry (grid) dan (Tri hexagon), cooling speed 90%, nozzle temperature 215ºC dan ekperimen nomor 27 infill geometry grid, cooling speed 80%, nozzle temperature 225ºC. hasil pengujian impak menggunakan spesimen PLA+ didapatkan nilai uji impak sebesar 0,00548 Joule/mm2, dengan ekperimen nomor 32 infill geometry cubic subdivision, cooling speed 80%, nozzle temperature 225oC.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7479
Author(s):  
Manjunath Patel Gowdru Chandrashekarappa ◽  
Ganesh Ravi Chate ◽  
Vineeth Parashivamurthy ◽  
Balakrishnamurthy Sachin Kumar ◽  
Mohd Amaan Najeeb Bandukwala ◽  
...  

High impact polystyrene (HIPS) material is widely used for low-strength structural applications. To ensure proper function, dimensional accuracy and porosity are at the forefront of industrial relevance. The dimensional accuracy cylindricity error (CE) and porosity of printed parts are influenced mainly by the control variables (layer thickness, shell thickness, infill density, print speed of the fused deposition modeling (FDM) process). In this study, a central composite design (CCD) matrix was used to perform experiments and analyze the complete insight information of the process (control variables influence on CE and porosity of FDM parts). Shell thickness for CE and infill density for porosity were identified as the most significant factors. Layer thickness interaction with shell thickness, infill density (except for CE), and print speed were found to be significant for both outputs. The interaction factors, i.e., shell thickness and infill density, were insignificant (negligible effect) for both outputs. The models developed produced a better fit for regression with an R2 equal to 94.56% for CE, and 99.10% for porosity, respectively. Four algorithms (bald eagle search optimization (BES), particle swarm optimization (PSO), RAO-3, and JAYA) were applied to determine optimal FDM conditions while examining six case studies (sets of weights assigned for porosity and CE) focused on minimizing both CE and porosity. BES and RAO-3 algorithms determined optimal conditions (layer thickness: 0.22 mm; shell thickness: 2 mm; infill density: 100%; print speed: 30 mm/s) at a reduced computation time equal to 0.007 s, differing from JAYA and PSO, which resulted in an experimental CE of 0.1215 mm and 2.5% of porosity in printed parts. Consequently, BES and RAO-3 algorithms are efficient tools for the optimization of FDM parts.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012001
Author(s):  
Umesh Kumar Vates ◽  
Nand Jee Kanu ◽  
Eva Gupta ◽  
Gyanendra Kumar Singh ◽  
Naveen Anand Daniel ◽  
...  

Abstract Rapid prototyping (RP) uses a cycle where a real model is made by explicitly adding material as thin cross-sectional layers. Fused deposition modelling (FDM) 3D printer is being use for synthesis of ABS based bone hammer. Response surface methodology (RSM) based L27 design of experiment were adopted to perform the experiment using four influencing parameters such as layer thickness, infill percentage, orientation and nozzle temperature for the three responses deflection, hardness and weight. Response surface methodology was used for modelling and optimization of considered process parameters. In present investigation, it is evident that bone hammer fabrication process parameters have been optimized on data such as bone hammer weight 19.8091g, hardness 104.5921 BHN, and force of 15 degree deflection 36.0681 N has been produced with RSM prediction with influence of process parameters such as layer thickness 0.250 mm, infill percentage 63.3333, orientation 60 degree, nozzle temperature 240°C.


Author(s):  
Rohana Huvat ◽  
◽  
Muhamad Asri Azizul ◽  
Syabillah Sulaiman ◽  
◽  
...  

Additive manufacturing (AM) is known as the technology which enable using a layer wise in fabrication of a complex part directly from CAD files without using any specific tooling. This manufacturing techniques offers many strategic advantages which include design freedom for the build of complex part geometries which cannot be made in other way, the ability to build functional part in a small size for the end user customization and its ability to do improvement for the expensive part in aerospace and other industries. The aim of this research is to study the effect of process parameter such as layer thickness, infill density and object orientation to the accuracy of printed part measurement with CAD model, surface roughness and mechanical strength of PLA and ABS material. Therefore, it is important to find the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials. To achieve the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials, Taguchi method L4 orthogonal array is used to conduct this experiment and Minitab 18 software will analyze the result and shows the best optimum value. The result from ANOVA analysis shows that object orientation gives highest contribution to the dimensional accuracy and surface roughness for both materials. Meanwhile, for mechanical strength layer thickness highly contributed to the ABS material and object orientation for the PLA material. A Car Backseat Headrest Hanger/Hook model is fabricated by the best optimal combination and level of process parameter of mechanical strength.


2019 ◽  
Vol 8 (3) ◽  
pp. 7635-7639

Influence of layer thickness nozzle temperature and angle on tensile strength of PLA fabricated with FDM (FFF) was experimentally investigated. Polylactic Acid (PLA) is a semi-crystalline and bio-friendly thermoplastic polymer has identified as important material in different applications due to its mechanical characteristics. Fused Deposition Modeling (FDM) is a one of the proved technology in Fused Filament Fabrication (FFF) technique in additive manufacturing process. In present investigation different specimens were fabricated using FDM technique with different layer height and different layer angles for finding influence of these manufacturing parameters on tensile strength of the specimen. Specimens were fabricated and tested as per ASTM D638 standard. It is clearly observed that tensile strength is more for +450 /-450 layer angle than the +00 /-0 0 layer angle for a given layer height(h=0.10 mm, h=0.15mm and h=0.20mm).The TAGUCHI analysis is carried with nozzle temperature, layer thickness and angle finding optimal values. It has been observed that, the optimal parameter is angle, which is equal to 30 0 .the ANOVA variation of angle layer with tensile strength has been observed that 18.10-31.90.


2018 ◽  
Vol 2 (94) ◽  
pp. 65-75 ◽  
Author(s):  
T.D. Dikova ◽  
D.A. Dzhendov ◽  
D. Ivanov ◽  
K. Bliznakova

Purpose: To compare the dimensions accuracy and surface roughness of polymeric dental bridges produced by different 3D printers. Design/methodology/approach: Four-part dental bridges were manufactured by three printing systems working on the basis of digital light projection (DLP) stereolithography (SLA), laser-assisted SLA and fused deposition modeling (FDM). The materials used from SLA printers are liquid methacrylate photopolymer resins, while FDM printer use thin wire plastic polylactic acid. The accuracy of the external dimensions of dental bridges was evaluated and the surface roughness was measured. Findings: It was found that compared to the base model, the dimensions of the SLA printed bridges are bigger with 1.25%-6.21%, while the corresponding dimensions of the samples, made by FDM are smaller by 1.07%-4.71%, regardless the position of the object towards the substrate. The samples, produced by FDM, are characterized with the highest roughness. The average roughness deviation (Ra) values for DLP SLA and lase-assisted SLA are 2.40 μm and 2.97 μm, respectively. Research limitations/implications: For production of high quality polymeric dental constructions next research should be targeted to investigation of the polymerization degree, stresses and deformations. Practical implications: Our study shows that 3D printers, based on laser-assisted and DLP SLA, can be successfully used for manufacturing of polymeric dental bridges – temporary restorations or cast patterns, while FDM system is more suitable for training models. The results will help the dentists to make right choice of the most suitable 3D printer. Originality/value: One of the largest fixed partial dentures – four-part bridges, produced by three different commercial 3D printing systems, were investigated by comparative analysis. The paper will attract readers’ interest in the field of biomedical materials and application of new technologies in dentistry.


Sign in / Sign up

Export Citation Format

Share Document