Characteristics of Abs and Pla Material in 3D Printing for Car Backseat Headrest Hanger/Hook Model

Author(s):  
Rohana Huvat ◽  
◽  
Muhamad Asri Azizul ◽  
Syabillah Sulaiman ◽  
◽  
...  

Additive manufacturing (AM) is known as the technology which enable using a layer wise in fabrication of a complex part directly from CAD files without using any specific tooling. This manufacturing techniques offers many strategic advantages which include design freedom for the build of complex part geometries which cannot be made in other way, the ability to build functional part in a small size for the end user customization and its ability to do improvement for the expensive part in aerospace and other industries. The aim of this research is to study the effect of process parameter such as layer thickness, infill density and object orientation to the accuracy of printed part measurement with CAD model, surface roughness and mechanical strength of PLA and ABS material. Therefore, it is important to find the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials. To achieve the optimum value of dimensional accuracy, surface roughness and mechanical strength for both materials, Taguchi method L4 orthogonal array is used to conduct this experiment and Minitab 18 software will analyze the result and shows the best optimum value. The result from ANOVA analysis shows that object orientation gives highest contribution to the dimensional accuracy and surface roughness for both materials. Meanwhile, for mechanical strength layer thickness highly contributed to the ABS material and object orientation for the PLA material. A Car Backseat Headrest Hanger/Hook model is fabricated by the best optimal combination and level of process parameter of mechanical strength.

2018 ◽  
Vol 1 (90) ◽  
pp. 25-32 ◽  
Author(s):  
Ts. Dikova ◽  
Dzh. Dzhendov ◽  
Iv. Katreva ◽  
Ts. Tonchev

Purpose: of this paper is to investigate the accuracy of Co-Cr dental bridges, manufactured using 3D printed cast patterns. Design/methodology/approach: Four-unit dental bridges are fabricated from the alloys i-Alloy and Biosil-f by lost-wax process. The polymeric cast patterns are 3D printed with different layer’s thickness (13 μm, 35 μm and 50 μm). Two 3D printers are used: stereolithographic “Rapidshape D30” and ink-jet “Solidscape 66+”. The geometrical and fitting accuracy as well as the surface roughness are investigated. Findings: It is established that Co-Cr bridges, casted from 3D printed patterns with 50 μm layer thickness, characterize with the largest dimensions – 3.30%-9.14% larger than those of the base model. Decreasing the layer thickness leads to dimensional reduction. The dimensions of the bridges, casted on patterns with 13 μm layer thickness, are 0.17%-2.86% smaller compared to the primary model. The average roughness deviation Ra of the surface of Co-Cr bridges, manufactured using 3D printed patterns, is 3-4 times higher in comparison to the bridge-base model. The greater the layer thickness of the patterns, the higher Ra of the bridges. The silicone replica test shows 0.1-0.2 mm irregular gap between the bridge retainers and abutments of the cast patterns and Co-Cr bridges. Research limitations/implications: Highly precise prosthetic constructions, casted from 3D printed patterns, can be produced only if the specific features of the 3D printed objects are taken in consideration. Practical implications: Present research has shown that the lower the thickness of the printed layer of cast patterns, the higher the dimensional accuracy and the lower the surface roughness. Originality/value: The findings in this study will help specialist in dental clinics and laboratories to choose the right equipment and optimal technological regimes for production of cast patterns with high accuracy and low surface roughness for casting of precise dental constructions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anis Fatima ◽  
◽  
Muhammad Wasif ◽  
Muhammad Omer Mumtaz ◽  
◽  
...  

Metal cutting operations involve intense heat generation owing to plastic deformation of the work piece and due to friction at the tool-work piece and tool-chip interface. The heat generated in metal cutting unfavourably affects the quality and thus the functional performance of the product. It is known that quality and functional performance is the function of roughness and dimensional accuracy. To maintain a longer component life, along with the robust material choice, a component should have good surface finish and dimensional accuracy. While, for the organization to monitor and control their environmental issues in a holistic manner, emphasis in adopting eco-friendly practices and protecting environment has been growing continuously across all the business sectors. In this study, an attempt is made to optimize the process parameter of stainless steel AISI-410 alloy, a nuclear graded material, for better surface finish. For this, Taguchi L9 orthogonal array was utilise to identify the process parameter and cutting environment. Analysis of variance (ANOVA) was also conducted to highlight the significant parameter that affects the surface finish most. A statistical model to forecast the surface roughness was also developed and was validated by an experiment with a maximum error of 12%. Results indicates that feed rate is the most critical factor that effects the surface roughness with the contribution of 91.5%, followed by environment with 5.22% contribution, cutting speed and depth of cut with 2.7 % and 0.4 % respectively. The correlation coefficient of 0.9213 and conformation tests reveals that developed statistical model predicts surface roughness with the statistical error limit.


2019 ◽  
Vol 11 (01) ◽  
pp. 33-40
Author(s):  
Pristiansyah Pristiansyah ◽  
Hasdiansah Hasdiansah ◽  
Sugiyarto Sugiyarto

Fused Deposition Modeling (FDM) is a 3D Printing technique used to print products using filaments as material. The printed product has ideal geometric characteristics if it has meticulous size and perfect shape. One type of material that can be processed using 3D Printing FDM is flexible material. Research in terms of dimensional accuracy has been carried out on PLA and ABS materials. While research using flexible materials is still rarely done. From these problems, we need a study to get the process parameter settings on a 3D Printer machine that is optimal in obtaining dimensional accuracy using flexible materials. The research was carried out using the Prusa model DIY (Do It Yourself) 3D machine with FDM technology. The material used is Eflex type flexible filament with a diameter of 1.75 mm. The process parameters used in this study are flowrate, layer thickness, temperature nozzle, speed printing, overlap, and fan speed. Cuboid test specimens measuring 20 mm × 20 mm × 20 mm. Process parameter optimization using the Taguchi L27 Orthogonal Array method for dimensional accuracy testing. Optimal process parameter values for obtaining X dimension accuracy are 110% flowrate, 0.10 mm layer thickness, 210 °C nozzle temperature, 40 mm/s print speed, 75% overlap, and 50% fan speed. Y dimension is 120% flowrate, layer thickness 0.20 mm, nozzle temperature 230 °C, print speed 30 mm/s, overlap 75%, and fan speed 100%. As well as the Z dimension is 120% flowrate, layer thickness 0.30 mm, nozzle temperature 210 °C, print speed 30 mm/s, overlap 50%, and fan speed 100%.


This paper reported on the effect of ambient temperature, layer thickness, and part angle on the surface roughness and dimensional accuracy. The response surface methodology (RSM) was employed by using historical data in the experiment to determine the significant factors and their interactions on the fused deposition modelling (FDM) performance. Three controllable variables namely ambient temperature (30 °C, 45 °C, 60 °C), layer thickness (0.178 mm, 0.267 mm, 0.356 mm) and part angle (22.5°, 45°, 67.5°) have been studied. A total of 29 numbers of experiments had been conducted, including two replications at the center point. The results showed that all the parameter variables have significant effects on the part surface roughness and dimensional accuracy. Layer thickness is the most dominant factors affecting surface roughness. Meanwhile, the ambient temperature was the most dominant in determining part dimensional accuracy. The responses of various factors had been illustrated in the cross-sectional sample analysis. The optimum parameter required for minimum surface roughness and dimensional accuracy was at ambient temperature 30 °C, layer thickness 0.18 mm and part angle 67.38°. The optimization has produced maximum productivity with RaH 3.21 µm, RaV 11.78 µm, and RaS 12.79 µm. Meanwhile, dimensional accuracy height eror 3.21%, width error 3.70% and angle 0.38°


2013 ◽  
Vol 465-466 ◽  
pp. 55-59 ◽  
Author(s):  
M.N. Hafsa ◽  
Mustaffa Ibrahim ◽  
Md. Saidin Wahab ◽  
M.S. Zahid

Selection of the most suitable Rapid Prototyping (RP) and manufacturing process for a specific part creation is a difficult task due to the development of RP processes and materials. Most current RP processes can build with more than one type of material. The paper presents the evaluation on Acrylonitrile Butadiene Styrene (ABS) and Polylactic acid (PLA) part produced from Fused Deposition Modeling (FDM) as a master pattern for Investment Casting (IC) process. The main purpose of this research is to evaluate the dimensional accuracy and surface roughness for hollow and solid part of FDM pattern for IC process with different layer thickness. The value were taken for both before and after the casting process. Results show that model fabricated with hollow internal pattern structure (ABS material) that produced by low layer thickness is better than other models in terms of its dimensional accuracy (-0.19666mm) and surface roughness (1.41μm). Even though the ABS built part performed better as the model, the PLA build part produces better overall casting result. Final part fabricated with solid pattern (PLA material) that produced by high layer thickness is better than other final parts which its dimensional accuracy (-0.12777mm) and surface roughness (3.07μm).


2020 ◽  
Vol 10 (8) ◽  
pp. 2899 ◽  
Author(s):  
Ahmed Elkaseer ◽  
Stella Schneider ◽  
Steffen G. Scholz

This article reports on the investigation of the effects of process parameters and their interactions on as-built part quality and resource-efficiency of the fused filament fabrication 3D printing process. In particular, the influence of five process parameters: infill percentage, layer thickness, printing speed, printing temperature, and surface inclination angle on dimensional accuracy, surface roughness of the built part, energy consumption, and productivity of the process was examined using Taguchi orthogonal array (L50) design of experiment. The experimental results were analyzed using ANOVA and statistical analysis, and the parameters for optimal responses were identified. Regression models were developed to predict different process responses in terms of the five process parameters experimentally examined in this study. It was found that dimensional accuracy is negatively influenced by high values of layer thickness and printing speed, since thick layers of printed material tend to spread out and high printing speeds hinder accurate deposition of the printed material. In addition, the printing temperature, which regulates the viscosity of the used material, plays a significant role and helps to minimize the dimensional error caused by thick layers and high printing speeds, whereas the surface roughness depends very much on surface inclination angle and layer thickness, which together determine the influence of the staircase effect. Energy consumption and productivity are primarily affected by printing speed and layer thickness, due to their high correlation with build time.


2020 ◽  
Vol 26 (9) ◽  
pp. 1535-1554
Author(s):  
Swapnil Vyavahare ◽  
Shailendra Kumar ◽  
Deepak Panghal

Purpose This paper aims to focus on an experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling (FDM) technique of additive manufacturing. The fabricated parts of acrylonitrile butadiene styrene (ABS) material have pyramidal and conical features. Influence of five process parameters of FDM, namely, layer thickness, wall print speed, build orientation, wall thickness and extrusion temperature is studied on response characteristics. Furthermore, regression models for responses are developed and significant process parameters are optimized. Design/methodology/approach Comprehensive experimental study is performed using response surface methodology. Analysis of variance is used to investigate the influence of process parameters on surface roughness, dimensional accuracy and time of fabrication in both outer pyramidal and inner conical regions of part. Furthermore, a multi-response optimization using desirability function is performed to minimize surface roughness, improve dimensional accuracy and minimize time of fabrication of parts. Findings It is found that layer thickness and build orientation are significant process parameters for surface roughness of parts. Surface roughness increases with increase in layer thickness, while it decreases initially and then increases with increase in build orientation. Layer thickness, wall print speed and build orientation are significant process parameters for dimensional accuracy of FDM parts. For the time of fabrication, layer thickness and build orientation are found as significant process parameters. Based on the analysis, statistical non-linear quadratic models are developed to predict surface roughness, dimensional accuracy and time of fabrication. Optimization of process parameters is also performed using desirability function. Research limitations/implications The present study is restricted to the parts of ABS material with pyramidal and conical features only fabricated on FDM machine with delta configuration. Originality/value From the critical review of literature it is found that some researchers have made to study the influence of few process parameters on surface roughness, dimensional accuracy and time of fabrication of simple geometrical parts. Also, regression models and optimization of process parameters has been performed for simple parts. The present work is focussed on studying all these aspects in complicated geometrical parts with pyramidal and conical features.


Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1550
Author(s):  
Soo-Yeon Yoo ◽  
Seong-Kyun Kim ◽  
Seong-Joo Heo ◽  
Jai-Young Koak ◽  
Joung-Gyu Kim

Previous studies on accuracy of three-dimensional (3D) printed model focused on full arch measurements at few points. The aim of this study was to examine the dimensional accuracy of 3D-printed models which were teeth-prepped for three-unit fixed prostheses, especially at margin and proximal contact areas. The prepped dental model was scanned with a desktop scanner. Using this reference file, test models were fabricated by digital light processing (DLP), Multi-Jet printing (MJP), and stereo-lithography apparatus (SLA) techniques. We calculated the accuracy (trueness and precision) of 3D-printed models on 3D planes, and deviations of each measured points at buccolingual and mesiodistal planes. We also analyzed the surface roughness of resin printed models. For overall 3D analysis, MJP showed significantly higher accuracy (trueness) than DLP and SLA techniques; however, there was not any statistically significant difference on precision. For deviations on margins of molar tooth and distance to proximal contact, MJP showed significantly accurate results; however, for a premolar tooth, there was no significant difference between the groups. 3D color maps of printed models showed contraction buccolingually, and surface roughness of the models fabricated by MJP technique was observed as the lowest. The accuracy of the 3D-printed resin models by DLP, MJP, and SLA techniques showed a clinically acceptable range to use as a working model for manufacturing dental prostheses


Sign in / Sign up

Export Citation Format

Share Document