scholarly journals Accumulation of phytoene and astaxanthin and related genes expression in Haematococcus pluvialis under sodium acetate stress

2020 ◽  
Vol 29 ◽  
pp. 155-164
Author(s):  
X Cong ◽  
X Zang ◽  
M Dong ◽  
Z Wang ◽  
B He ◽  
...  

Phytoene and astaxanthin are 2 important carotenoids in the green alga Haematococcus pluvialis. Under environmental stress, the synthesis of phytoene in H. pluvialis increases significantly, and phytoene is converted to astaxanthin through enzymatic catalysis. This paper analyzes the relationship between astaxanthin and phytoene accumulation in carotenoid synthesis pathways under different concentrations of sodium acetate (NaAc) by high-performance liquid chromatography. The highest concentrations of phytoene and astaxanthin were observed at the NaAc concentration of 6 g l-1 on the 12th day of induction. The highest astaxanthin concentration achieved was 2.26 ± 0.28%. Therefore, we concluded that 6 g l-1 NaAc and induction for 12 d provided the optimal inducing conditions for astaxanthin accumulation in H. pluvialis. psy, pds, lcyB, β-carotene ketolase crtw, and crtz, which are genes related to phytoene and astaxanthin synthesis, were cloned and studied at the transcriptional level. crtw and crtz were continuously up-regulated since the first day of induction, while psy, pds, and lcyB were continuously up-regulated starting on the 3rd day of induction. These findings are important for enhancing our understanding of the mechanism of accumulation of phytoene and astaxanthin in H. pluvialis and provide a foundation for identifying the induction conditions necessary for optimizing astaxanthin production and increasing astaxanthin yields.

2020 ◽  
Author(s):  
Lei Fang ◽  
Jingkui Zhang ◽  
Zhongnan Fei ◽  
Minxi Wan

Abstract Background: Nature astaxanthin is mainly derived from Haematococcus pluvialis. H. pluvialis has four kinds of cell morphology. Based on sequential heterotrophy-dilution-photoinduction (SHDP) technology, photoinduction using non-motile cells as seeds could result in a higher astaxanthin production than that of using brown akinetes as photoinduction seeds. To have a comprehensive understanding of this phenomenon, transcriptome analysis was conducted in this study.Results: Though most of photosynthesis genes expression were down-regulated during the SHDP culture process. Comparing with the group using brown akinetes as photoinduction seeds, the genes expression involved in astaxanthin biosynthesis, lipid biosynthesis and photosynthesis were up-regulated in the non-motile cells group. Especially, chyb gene improving the conversion of β-carotene into astaxanthin was up-regulated by 2.6-fold. The acaca gene enhancing the carboxylation of acetyl-CoA to malonyl-CoA was up-regulated by 1.4-fold.Conclusions: Astaxanthin synthesis mechanism of non-motile cells with higher astaxanthin accumulation ability than brown akinetes was attributed to the up-regulation of astaxanthin metabolism, lipid metabolism and photosynthesis-related genes expression. The results are expected to guide the optimization of astaxanthin production in H. pluvialis by improving lipid content or photosynthesis.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1808
Author(s):  
Rosa Tundis ◽  
Carmela Conidi ◽  
Monica R. Loizzo ◽  
Vincenzo Sicari ◽  
Rosa Romeo ◽  
...  

Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 643
Author(s):  
Konstantin Chekanov ◽  
Daniil Litvinov ◽  
Tatiana Fedorenko ◽  
Olga Chivkunova ◽  
Elena Lobakova

Carotenoids astaxanthin and β-carotene are widely used natural antioxidants. They are key components of functional food, cosmetics, drugs and animal feeding. They hold leader positions on the world carotenoid market. In current work, we characterize the new strain of the green microalga Bracteacoccus aggregatus BM5/15 and propose the method of its culturing in a bubble-column photobioreactor for simultaneous production of astaxanthin and β-carotene. Culture was monitored by light microscopy and pigment kinetics. Fatty acid profile was evaluated by tandem gas-chromatography–mass spectrometry. Pigments were obtained by the classical two-stage scheme of autotrophic cultivation. At the first, vegetative, stage biomass accumulation occurred. Maximum specific growth rate and culture productivity at this stage were 100–200 mg∙L−1∙day−1, and 0.33 day−1, respectively. At the second, inductive, stage carotenoid synthesis was promoted. Maximal carotenoid fraction in the biomass was 2.2–2.4%. Based on chromatography data, astaxanthin and β-carotene constituted 48 and 13% of total carotenoid mass, respectively. Possible pathways of astaxanthin synthesis are proposed based on carotenoid composition. Collectively, a new strain B. aggregatus BM5/15 is a potential biotechnological source of two natural antioxidants, astaxanthin and β-carotene. The results give the rise for further works on optimization of B. aggregatus cultivation on an industrial scale.


2021 ◽  
Vol 13 (6) ◽  
pp. 3341
Author(s):  
Jesús Maya ◽  
Juan F. Luesia ◽  
Javier Pérez-Padilla

Universities strive to ensure quality education focused on the diversity of the student body. According to experiential learning theory, students display different learning preferences. This study has a three-fold objective: to compare learning styles based on personal and educational variables, to analyze the association between learning styles, the level of academic performance, and consistency of performance in four assessment methods, and to examine the influence of learning dimensions in students with medium-high performance in the assessment methods. An interdisciplinary approach was designed involving 289 psychology, early childhood education and primary education students at two universities in Spain. The Learning Style Inventory was used to assess learning styles and dimensions. The assessment methods used in the developmental psychology course included the following question formats: multiple-choice, short answer, creation-elaboration and an elaboration question on the relationship between theory and practice. Univariate analysis, multivariate analysis, and binomial logistic models were computed. The results reveal Psychology students to be more assimilative (theoretical and abstract), while early childhood and primary education students were evenly distributed among styles and were more divergent and convergent (practical) in absolute terms. In addition, high scores in perception (abstract conceptualization) were associated with a high level of performance on the multiple-choice tests and the elaboration question on the relationship between theory and practice. Abstract conceptualization was also associated with medium-high performance in all assessment methods and this variable predicted consistent high performance, independent of the assessment method. This study highlights the importance of promoting abstract conceptualization. Recommendations for enhancing this learning dimension are presented.


2021 ◽  
pp. 1-12
Author(s):  
Jia Zhou ◽  
Dingkun Wang ◽  
Bingong Li ◽  
Xuelian Li ◽  
Xingjun Lai ◽  
...  

<b><i>Introduction:</i></b> Trimethylamine N-oxide (TMAO) is a metabolite produced by gut bacteria. Although increased TMAO levels have been linked to hypertension (HTN) and chronic kidney disease (CKD) with poor prognosis, no clinical studies have directly addressed the relationship between them. In this study, we investigated the relationship between TMAO and renal dysfunction in hypertensive patients. <b><i>Methods:</i></b> We included healthy controls (<i>n</i> = 50), hypertensive patients (<i>n</i> = 46), and hypertensive patients with renal dysfunction (<i>n</i> = 143). Their blood pressure values were taken as the highest measured blood pressure. Renal function was evaluated using the estimated glomerular filtration rate. Plasma TMAO levels were measured using high-performance liquid chromatography tandem mass spectrometry. <b><i>Results:</i></b> We found significant differences in plasma TMAO levels among the 3 groups (<i>p</i> &#x3c; 0.01). The plasma TMAO of patients with HTN was significantly higher than that of healthy people, and the plasma TMAO of patients with HTN complicated by renal dysfunction was significantly higher than either of the other groups. Patients in the highest TMAO quartile were at a higher risk of developing CKD stage 5 than those in the lowest quartile. In the receiver operating characteristic curve, the area under the curve of TMAO combined with β 2-macroglobulin for predicting renal dysfunction in patients with HTN was 0.85 (95% confidence interval 0.80–0.90). <b><i>Conclusion:</i></b> An elevated TMAO level reflects higher levels of HTN and more severe renal dysfunction. TMAO, combined with β 2-macroglobulin levels, may assist in diagnosing CKD in hypertensive patients. Plasma TMAO has predictive value for early kidney disease in hypertensive patients.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 197
Author(s):  
Giorgia Giovannini ◽  
René M. Rossi ◽  
Luciano F. Boesel

The development of hybrid materials with unique optical properties has been a challenge for the creation of high-performance composites. The improved photophysical and photochemical properties observed when fluorophores interact with clay minerals, as well as the accessibility and easy handling of such natural materials, make these nanocomposites attractive for designing novel optical hybrid materials. Here, we present a method of promoting this interaction by conjugating dyes with chitosan. The fluorescent properties of conjugated dye–montmorillonite (MMT) hybrids were similar to those of free dye–MMT hybrids. Moreover, we analyzed the relationship between the changes in optical properties of the dye interacting with clay and its structure and defined the physical and chemical mechanisms that take place upon dye–MMT interactions leading to the optical changes. Conjugation to chitosan additionally ensures stable adsorption on clay nanoplatelets due to the strong electrostatic interaction between chitosan and clay. This work thus provides a method to facilitate the design of solid-state hybrid nanomaterials relevant for potential applications in bioimaging, sensing and optical purposes.


Sign in / Sign up

Export Citation Format

Share Document