scholarly journals Wnt/β-Catenin Signaling: a Promising New Target for Fibrosis Diseases

2012 ◽  
pp. 337-346 ◽  
Author(s):  
Y. GUO ◽  
L. XIAO ◽  
L. SUN ◽  
F. LIU

Wnt/β-catenin signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Recently, emerging evidence from researches of organ fibrosis suggest that sustained Wnt/β-catenin pathway reactivation is linked to the pathogenesis of fibrotic disorders. Here we focus on Wnt/β-catenin-related pathogenic effects in different organs, such as lung fibrosis, liver fibrosis, skin fibrosis and renal fibrosis. Additionally, Wnt/β-catenin signaling works in a combinatorial manner with TGF-β signaling in the process of fibrosis, and TGF-β signaling can induce expression of Wnt/β-catenin superfamily members and vice versa. Moreover, network analysis, based on pathway databases, revealed that key factors in the Wnt pathway were targeted by some differentially expressed microRNAs detected in fibrosis diseases. These findings demonstrated the crosstalks between Wnt/β-catenin pathway and TGF-β signalings, and microRNAs, highlighting the role of Wnts in organ fibrogenesis. Most importantly, nowadays there is a variety of Wnt pathway inhibitors which give us the potential therapeutic feasibility, modulation of the Wnt pathway may, therefore, present as a suitable and promising therapeutic strategy in the future.

2021 ◽  
Author(s):  
Minmin Song ◽  
Guangfeng Zhao ◽  
Haixiang Sun ◽  
Simin Yao ◽  
Zhenhua Zhou ◽  
...  

Emerging evidence demonstrates the important role of circular RNAs (circRNAs) in regulating pathological processes in various diseases including organ fibrosis. Endometrium fibrosis is the leading cause of uterine infertility, but the role of circRNAs in its pathogenesis is largely unknown. Here, we provide the evidence that upregulation of circPTPN12 in endometrial epithelial cells (EECs) of fibrotic endometrium functions as endogenous sponge of miR-21-5p to inhibit miR-21-5p expression and activity, which in turn results in upregulation of ΔNp63α to induce the epithelial mesenchymal transition (EMT) of EECs (EEC-EMT). In a mouse model of endometrium fibrosis, circPTPN12 appears to be a cofactor of driving EEC-EMT. Our findings reveal the novel mechanism in the pathogenesis of endometrium fibrosis and the potential therapeutic strategy for endometrium fibrosis via targeting circPTPN12/miR-21-5p/∆Np63α pathway.


2020 ◽  
Vol 4 (1) ◽  
pp. 177-196 ◽  
Author(s):  
Rene Jackstadt ◽  
Michael Charles Hodder ◽  
Owen James Sansom

The WNT pathway is a pleiotropic signaling pathway that controls developmental processes, tissue homeostasis, and cancer. The WNT pathway is commonly mutated in many cancers, leading to widespread research into the role of WNT signaling in carcinogenesis. Understanding which cancers are reliant upon WNT activation and which components of the WNT signaling pathway are mutated is paramount to advancing therapeutic strategies. In addition, building holistic insights into the role of WNT signaling in not only tumor cells but also the tumor microenvironment is a vital area of research and may be a promising therapeutic strategy in multiple immunologically inert cancers. Novel compounds aimed at modulating the WNT signaling pathway using diverse mechanisms are currently under investigation in preclinical/early clinical studies. Here, we review how the WNT pathway is activated in multiple cancers and discuss current strategies to target aberrant WNT signaling.


2001 ◽  
Vol 280 (6) ◽  
pp. L1327-L1334 ◽  
Author(s):  
Martin Kolb ◽  
Peter J. Margetts ◽  
Patricia J. Sime ◽  
Jack Gauldie

Transforming growth factor (TGF)-β is a key cytokine in the pathogenesis of pulmonary fibrosis, and pharmacological interference with TGF-β can ameliorate the fibrotic tissue response. The small proteoglycans decorin and biglycan are able to bind and inhibit TGF-β activity in vitro. Although decorin has anti-TGF-β properties in vivo, little is known about the physiological role of biglycan in vivo. Adenoviral gene transfer was used to overexpress active TGF-β, decorin, and biglycan in cell culture and in murine lungs. Both proteoglycans were able to interfere with TGF-β bioactivity in vitro in a dose-dependant manner. In vivo, overexpression of TGF-β resulted in marked lung fibrosis, which was significantly reduced by concomitant overexpression of decorin. Biglycan, however, had no significant effect on lung fibrosis induced by TGF-β. The data suggest that differences in tissue distribution are responsible for the different effects on TGF-β bioactivity in vivo, indicating that decorin, but not biglycan, has potential therapeutic value in fibrotic disorders of the lung.


Pneumologie ◽  
2014 ◽  
Vol 68 (S 01) ◽  
Author(s):  
K Milger ◽  
Y Yu ◽  
E Brudy ◽  
M Irmler ◽  
A Skapenko ◽  
...  
Keyword(s):  
T Cells ◽  

2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


2018 ◽  
Vol 24 (26) ◽  
pp. 3072-3083 ◽  
Author(s):  
Sowndramalingam Sankaralingam ◽  
Angham Ibrahim ◽  
MD Mizanur Rahman ◽  
Ali H. Eid ◽  
Shankar Munusamy

Background: The incidence and prevalence of diabetes mellitus are increasing globally at alarming rates. Cardiovascular and renal complications are the major cause of morbidity and mortality in patients with diabetes. Methylglyoxal (MG) - a highly reactive dicarbonyl compound – is increased in patients with diabetes and has been implicated to play a detrimental role in the etiology of cardiovascular and renal complications. Derived from glucose, MG binds to arginine and lysine residues in proteins, and the resultant end products serve as surrogate markers of MG generation in vivo. Under normal conditions, MG is detoxified by the enzyme glyoxalase 1 (Glo1), using reduced glutathione as a co-factor. Elevated levels of MG is known to cause endothelial and vascular dysfunction, oxidative stress and atherosclerosis; all of which are risk factors for cardiovascular diseases. Moreover, MG has also been shown to cause pathologic structural alterations and impair kidney function. Conversely, MG scavengers (such as N-acetylcysteine, aminoguanidine or metformin) or Nrf2/Glo1 activators (such as trans-resveratrol / hesperetin) are shown to be useful in preventing MG-induced cardiovascular and renal complications in diabetes. However, clinical evidence supporting the MG lowering properties of these agents are limited and hence, need further investigation. Conclusion: Reducing MG levels directly using scavengers or indirectly via activation of Nrf2/Glo1 may serve as a novel and potent therapeutic strategy to counter the deleterious effects of MG in diabetic complications.


2020 ◽  
Vol 16 (1) ◽  
pp. 18-27
Author(s):  
Manzoor M. Khan

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.


2020 ◽  
Vol 21 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Mohamed A. Ragheb ◽  
Marwa H. Soliman ◽  
Emad M. Elzayat ◽  
Mervat S. Mohamed ◽  
Nada El-Ekiaby ◽  
...  

Background: Doxorubicin (DOX) is the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance, is one of chemotherapy’s significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. Objective: Investigating the role of miR-520c-3p in enhancement of anti-tumor effect of DOX against HepG2 cells. Methods: Expression profile for liver related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. Expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using western blot technique. Results: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis including LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. Conclusion: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate chemosensitivity of HepG2 cells toward DOX treatment, providing a promising therapeutic strategy in HCC.


Sign in / Sign up

Export Citation Format

Share Document