scholarly journals Upregulation of Gastric Norepinephrine With β-Adrenoceptors and Gastric Dysmotility in a Rat Model of Functional Dyspepsia

2020 ◽  
pp. 135-143
Author(s):  
J. SONG ◽  
T. WANG ◽  
X. ZHANG ◽  
B. LI ◽  
C. ZHU ◽  
...  

Disordered motility is one of the most important pathogenic characteristics of unctional dyspepsia (FD), although the underlying mechanisms remain unclear. Since the sympathetic system is important to the regulation of gastrointestinal motility, the present study aimed to investigate the role of norepinephrine (NE) and adrenoceptors in disordered gastric motility in a rat model with FD. The effect of exogenous NE on gastric motility in control and FD rats was measured through an organ bath study. The expression and distribution of β-adrenoceptors were examined by real-time PCR, Western blotting and immunofluorescence. The results showed that endogenous gastric NE was elevated in FD rats, and hyperreactivity of gastric smooth muscle to NE and delayed gastric emptying were observed in the rat model of FD. The mRNA levels of β1-adrenoceptor and norepinephrine transporter (NET) and the protein levels of β2-adrenoceptor and NET were increased significantly in the gastric corpus of FD rats. All three subtypes of β-adrenoceptors were abundantly distributed in the gastric corpus of rats. In conclusion, the enhanced NE and β-adrenoceptors and NETs may be contributed to the disordered gastric motility in FD rats.

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Akira Nishiyama ◽  
Juan Wang ◽  
Shinichi Yachida ◽  
Genevieve Nguyen ◽  
Takuo Hirose ◽  
...  

(Pro)renin receptor ((P)RR) is a component of the Wnt receptor complex (Science, 2010). We have recently demonstrated that (P)RR plays an important role in the tumorigenesis of pancreatic ductal adenocarcinoma via the activation of Wnt/β-catenin signaling pathway (Shibayama et al. Sci Rep. 2015). Since the patients with colon cancer often show aberrantly activated Wnt/β-catenin-dependent signaling pathway by the mutations of its components, we investigated the possible role of (P)RR and Wnt/β-catenin signaling pathway in carcinogenesis of colon cancer. Real-time PCR was used for measuring mRNA levels of (P)RR. Protein levels of (P)RR was determined by Western blotting and immunohistochemistry. Activated β-catenin levels were determined by Western blotting. Cell proliferative ability was evaluated by counting the cell number in cultured colon cancer cell lines, HCT116 and DLD-1 cells. As compared to normal colon tissues (n=6), mRNA and protein levels of (P)RR were increased by 2.6- and 2.2-fold, respectively, in colon cancer tissues (n=9), which were associated with increased activated β-catenin levels (by 2.8-fold, P<0.05). However, plasma soluble (P)RR levels were not changed in patients with colon cancer (n=9). (P)RR and activated β-catenin levels were also increased in HCT116 (by 2.2- and 2.7-fold, n=5, respectively) and DLD-1 cells (by 1.9- and 2.8-fold, n=5, respectively). In these cells, inhibiting (P)RR with an siRNA attenuated the activity of β-catenin and reduced the proliferative abilities (n=5, P<0.05, respectively). These data suggest that (P)RR contributes to the tumorigenesis of colon cancer through the activation of Wnt/β-catenin signaling pathway.


2017 ◽  
Vol 29 (2) ◽  
pp. 505-517 ◽  
Author(s):  
Jinlong Luo ◽  
Guang Chen ◽  
Ming Liang ◽  
Aini Xie ◽  
Qingtian Li ◽  
...  

Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)–mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE–induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE–induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5255-5266 ◽  
Author(s):  
Angelo Cignarelli ◽  
Mariangela Melchiorre ◽  
Alessandro Peschechera ◽  
Antonella Conserva ◽  
Lucia Adelaide Renna ◽  
...  

The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-δ, peroxisome proliferator-activated receptor-γ, and C/EBPα mRNA levels were increased severalfold 2–6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBPδ mRNA induction support a role for this protein during early adipogenesis.


2021 ◽  
Author(s):  
Xiansheng Huang ◽  
Yiqi Zhang ◽  
Wenqiang Zhu ◽  
Piaopiao Huang ◽  
Jingmei Xiao ◽  
...  

Olanzapine, an antipsychotic drug, was reported to induce hypertriglyceridemia, whereas the underlying mechanism remains incompletely understood. This study was to determine the role of apolipoprotein A5 (apoA5) in olanzapine-induced hypertriglyceridemia. In this study, 36 drug-naive and first-episode schizophrenic adult patients (aged 18-60 years) in a multi-center clinical trial (ClinicalTrials.gov NCT03451734) were enrolled. Before and after olanzapine treatment, plasma lipid and apoA5 levels were detected. Moreover, 21 female C57BL/6 J mice (8 weeks old) were divided into 3 groups (n = 7/each group): low-dose olanzapine (3 mg/kg/day), high-dose olanzapine (6 mg/kg/day) and control group. After 6 weeks, plasma glucose, lipids and apoA5 as well as hepatic apoA5 protein and mRNA expression in these animals were detected. In our study in vitro, primary mouse hepatocytes and HepG2 cells were treated with olanzapine of 25, 50, 100 μmol/L, respectively. After 24 hours, apoA5 protein and mRNA levels in hepatocytes were detected. Our study showed that olanzapine treatment significantly increased plasma triglyceride levels and decreased plasma apoA5 levels in these schizophrenic patients. A significant negative correlation was indicated between plasma triglyceride and apoA5 levels in these patients. Consistently, olanzapine dose-dependently increased plasma triglyceride levels and decreased plasma apoA5 levels in mice. Surprisingly, an elevation of hepatic apoA5 protein levels was detected in mice after olanzapine treatment, with no changes of APOA5 mRNA expression. Likewise, olanzapine increased apoA5 protein levels in hepatocytes in vitro, without changes of hepatocyte APOA5 mRNA. Therefore, our study provides the first evidence about the role of apoA5 in olanzapine-induced hypertriglyceridemia. Furthermore, plasma apoA5 reduction, resulting in hypertriglyceridemia, could be attributed to olanzapine-induced inhibition of hepatic apoA5 secretion.


2021 ◽  
Vol 11 ◽  
Author(s):  
Thomas Jan Konturek ◽  
Cristina Martinez ◽  
Beate Niesler ◽  
Ivo van der Voort ◽  
Hubert Mönnikes ◽  
...  

Several studies have implied a role of brain-derived neurotrophic factor (BDNF) in abdominal pain modulation in irritable bowel syndrome (IBS). The aim of this study was to establish BDNF protein expression in human colonic biopsies and to show variation in IBS compared to controls. BDNF protein and mRNA levels were correlated with IBS symptom severity based on the IBS-symptom severity score (IBS-SSS). Biopsies from the descending colon and IBS-SSS were obtained from 10 controls and 20 IBS patients. Total protein of biopsies was extracted and assessed by ELISA and Western Blot. Total mRNA was extracted and gene expression measured by nCounter analysis. In IBS patients, symptom severity scores ranged from 124 to 486 (mean ± sem: 314.2 ± 21.2, &gt;300 represents severe IBS) while controls ranged from 0 to 72 (mean ± sem: 27.7 ± 9.0, &lt;75 represents healthy subjects, p &lt; 0.001). IBS patients reported significantly more food malabsorption, former abdominal surgery and psychiatric comorbidities. BDNF protein was present in all samples and did not differ between IBS and controls or sex. Subgroup analysis showed that female IBS patients expressed significantly more BDNF mRNA compared to male patients (p &lt; 0.05) and male IBS-D patients had higher IBS symptom severity scores and lower BDNF mRNA and protein levels compared to male controls (p &lt; 0.05). Scatter plot showed a significant negative correlation between IBS-SSS and BDNF mRNA levels in the cohort of male IBS-D patients and their male controls (p &lt; 0.05). We detected a high proportion of gastrointestinal surgery in IBS patients and confirmed food intolerances and psychiatric diseases as common comorbidities. Although in a small sample, we demonstrated that BDNF is detectable in human descending colon, with higher BDNF mRNA levels in female IBS patients compared to males and lower mRNA and protein levels in male IBS-D patients compared to male controls. Further research should be directed toward subgroups of IBS since their etiologies might be different.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 646-646
Author(s):  
Changju QU ◽  
Amineh Vaghefi ◽  
Kranthi Kunkalla ◽  
Jennifer R Chapman ◽  
Yadong Liu ◽  
...  

Abstract Tumor necrosis factor receptor-associated factor 6 (TRAF6), an (K63) E3-ligase, plays a crucial role in many biological processes and its activity is relevant in the biology of multiple cancers including diffuse large B cell lymphoma (DLBCL). Although molecules that trigger TRAF6 activation have been defined, those that stabilize TRAF6 levels and/or enhance TRAF6 function remain largely unclear. Previously, we found that activation of smoothened (SMO) with recombinant Hedgehog (Hh) ligand increased the binding between SMO with TRAF6, as well as TRAF6 protein levels (Blood 2013; 121:4718-28). In addition, transient overexpression of SMO resulted in increased K63-Ub of both TRAF6 and NEMO indicating stabilization of these proteins resulting in NF-kB activation. This is relevant, as more recently we found that TRAF6 amplifies pAKT signaling in DLBCL and that TRAF6 is the dominant E3 ligase for the K63-Ub of AKT in DLBCL. Moreover, TRAF6 recruitment to the cell membrane, and stabilization of its ubiquitination profile are facilitated by SMO. SMO is a member of the Frizzled-class G-protein-coupled receptor (GPCRs) and is traditionally known for its role as signal transducer in canonical Hedgehog (Hh) signaling. These observations prompted us to investigate whether the ability of SMO to increase TRAF6 levels is limited to ligand induced signaling, whether it contributes to chemoresistance in DLBCL cells, and whether SMO directly participates in controlling TRAF6 levels. To confirm the regulatory role of SMO in the TRAF6/AKT axis in DLBCL cells (HBL1 and HT) and further outline the nature of the underlying regulation, we measured the impact of activation of the Hh pathway with recombinant Shh ligand on TRAF6 levels, with and without SMO knockdown or recombinant SMO overexpression. Canonical Hh signaling results in the activation of the GLI1 transcription factor and the subsequent elevation of GLI1 mRNA levels is an established indicator of activation of the Hh pathway. However, neither SMO activation nor the knockdown of GLI1 had a significant impact on TRAF6 mRNA levels. These findings indicate that TRAF6 is not transcriptionally regulated by SMO signaling through GLI1 (canonical Hh signaling). In contrast, overexpression of SMO or siRNA knockdown of SMO resulted in an increase or decrease of TRAF6 protein levels, respectively. Consistent with the decrease of AKT activation (pAKT T308 and S473) after TRAF6 knockdown, the increase in TRAF6 levels that follows SMO overexpression resulted in an increase in the levels of AKT phosphorylation. Altogether, these observations suggest a post-translational regulation of TRAF6 by SMO. Indeed, stable knockdown of SMO dramatically reduces the half-life of TRAF6 in both HBL1 and HT cells in the presence of cyclohexamide. Furthermore, overexpression of SMO increases K63-Ub of both TRAF6 and AKT. In contrast, the SMO induced decrease in K48-Ub occurred only for TRAF6 but not for AKT. These data link the SMO-stimulated activation of TRAF6 to the enhancement of AKT signaling and protection of TRAF6 from proteasomal degradation. Mechanistically, we found that SMO, through its C-terminal tail, stabilizes TRAF6 and protects TRAF6 from proteosomal degradation, an effect mediated by ubiquitin-specific protease-8 (USP8). Importantly, this functional link between SMO and TRAF6 is reflected in DLBCL patient samples where high expression of both molecules correlates with poor prognosis. Resistance to DXR is a serious challenge in the treatment of DLBCL, and activated AKT is known to contribute to DXR resistance in multiple cancers including DLBCL. We evaluated whether SMO and TRAF6 support resistance to DXR in DLBCL cell lines. We exposed HT and HBL1 cells as well as their counterparts with stable knockdown of TRAF6 or SMO to DXR for 96hrs. Cell viability after exposure to DXR was determined by an Annexin V and PI staining assay. Silencing SMO or TRAF6 dramatically decreased cell survival after treatment with DXR. In summary, we report that SMO is needed to facilitate and maintain TRAF6-dependent elevated pAKT levels in DLBCL cell lines of germinal (GC) and non-GC subtypes, and that the SMO/TRAF6 axis contributes to DXR resistance in DLBCL. Our study reveals a novel and potential central cell survival signaling mechanism in which SMO stabilizes and protects TRAF6 from proteosomal degradation. Disclosures Lossos: Affimed: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Congqing Li ◽  
Wenyan Wang ◽  
Shiying Sun ◽  
Youjiang Xu ◽  
Ziang Fang ◽  
...  

Objective. Intrauterine adhesions affect menstruation and fertility, and endometrial fibrosis is the final manifestation of IUA. MMP-9 is closely related to fibrosis. The purpose of the study was to assess the role of MMP-9 in intrauterine adhesion (IUA) in rats and patients. Methods. 40 rats and 24 women were enrolled in this study. 40 rats were randomly divided into 3 groups: IUA group ( n = 20 ), sham group ( n = 10 ), and control group ( n = 10 ). Rat IUA models were established by intrauterine mechanical and chemical injured. In this study, 12 patients of intrauterine adhesions were detected and underwent TCRA (transcervical resection of adhesion) surgery, and endometrial tissue specimens were obtained during operation. One month later, an office hysteroscopy procedure was performed, and endometrial tissue specimens were obtained during operation again (postoperative group). A group of 12 normal age-matched control individuals served as controls underwent hysteroscopy and endometrial sampling. We used immunohistochemistry to detect MMP-9 expressions in rats and human endometrial tissues and to detect MMP-9 protein levels by Western blotting. In addition, we detected mRNA expression levels with qRT-PCR. Results. The expression of MMP-9 in the IUA rats was reduced compared with that in the sham group and Ctrl group ( P < 0.05 ), and the expression of MMP-9 was also reduced in the IUA patients compared with that in the Ctrl group ( P < 0.05 ). The mRNA levels of MMP-9 in the endometrium reflected similar results ( P < 0.05 ). The MMP-9 clearly increased even in the endometrium after TCRA surgery ( P < 0.05 ). Conclusion. Our study suggests that MMP-9 may play an important role in IUA. In the future, more in-depth research should be conducted on MMP-9.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroyuki Yajima ◽  
Izuki Amano ◽  
Sumiyasu Ishii ◽  
Tetsushi Sadakata ◽  
Wataru Miyazaki ◽  
...  

Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3’-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenjian Yao ◽  
Jianjun Wang ◽  
Li Zhu ◽  
Xiangbo Jia ◽  
Lei Xu ◽  
...  

BackgroundIncreasing researches have been reported that epigenetic alterations play critical roles in ESCC development. However, the role of the histone demethylase KDM4D in ESCC tumorigenesis is poorly investigated. This study aims to discover the underlying mechanisms between KDM4D and ESCC progression.MethodsCCK-8 assays, clone formation assay and soft-agar assays were performed to assess cell proliferation. Transwell assay was utilized to assess cell migration efficiency, while sphere formation assay was used to evaluate the cell self-renewal ability. Bioinformatic analysis was conducted to identify prognostic factors and predict the potential E3 ubiquitin ligases. In vitro ubiquitination assay was conducted to confirm the regulations between SYVN1 and HMGB1. The mRNA levels or protein levels of genes were detected by real-time PCR and western blot analysis. In vivo tumor xenograft models were used to determine whether the HMGB1 inhibition affected the malignant features of ESCC cells.ResultEpigenome screening and low-throughput validations highlighted that KDM4D is a tumor suppressor in ESCC. KDM4D expressed lowly in tumors that predicts poor prognosis. KDM4D deficiency significantly enhanced tumor growth, migration and stemness. Mechanistically, KDM4D transcriptionally activates SYVN1 expressions via H3K9me3 demethylation at the promoter region, thereby triggering the ubiquitin-dependent degradation of HMGB1. Low KDM4D depended on accumulated HMGB1 to drive ESCC progression and aggressiveness. Targeting HMGB1 (Glycyrrhizin) could remarkably suppress ESCC tumor growth in vitro and in vivo, especially in KDM4D-deficient cells.ConclusionsWe systematically identified KDM4D/SYVN1/HMGB1 axis in ESCC progression, proving novel biomarkers and potential therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document