Heat Treatment of AA2024 Powders for Enhanced Solid State Structural Repairs Via Cold Spray Deposition

Author(s):  
William Story ◽  
Tian Liu ◽  
Luke Brewer
Author(s):  
Deliang Guo ◽  
Bertrand Jodoin ◽  
Linruo Zhao

Abstract The hot-section components of modern gas turbines (e.g.; turbine blades and vanes) are typically manufactured from Nibase superalloys. To develop the γ/γ' microstructure that imparts superior thermomechanical and creep properties; Nibase superalloys usually require three distinct heat treatments: first a solution heat treatment; followed by primary aging; and finally secondary aging. To achieve oxidation resistance; MCrAlY coatings are applied on the superalloy components as either environmental coatings or bond coats for thermal barrier coatings. In this study; the effects of different processing sequences on MCrAlY coating characteristics and short-term isothermal oxidation performance were investigated. Specifically; cold spray deposition of NiCoCrAlTaY coatings was carried out on single-crystal Ni-base superalloy substrates that underwent various degrees of the full heat treatments prior to being coated. The remaining required heat treatments for the superalloy substrates were then performed on the coated samples after the cold spray deposition. The microstructures of the CMSX-4 substrates and NiCoCrAlTaY coatings were characterized after each heat treatment. Isothermal oxidation performance of the coated samples prepared using different sequences was evaluated at 1100°C for 2 hours. The results suggested a promising procedure of performing only solution heat treatment on the superalloy substrate before coating deposition and then primary aging and secondary aging on the coated samples. This processing sequence could potentially improve the oxidation performance of MCrAlY coatings; as the aging processes can be used to effectively homogenize coating microstructure and promote a thin thermally grown oxide (TGO) scale prior to actual isothermal oxidation.


Author(s):  
Lorena Perez ◽  
Jake Colburn ◽  
Luke N. Brewer ◽  
Michael Renfro ◽  
Tim McKechnie

Abstract In this work; Inconel 718 gas-atomized powder was successfully heat treated over the range of 700-900°C. As-atomized and as-heat treated powders were cold sprayed with both nitrogen and helium gasses. Cold spray of high strength materials is still challenging due to their resistance to particle deformation affecting the resulting deposit properties. Powder heat treatment to modify its deformation behavior has recently been developed for aluminum alloy powders; however; there is no literature reported for Inconel 718 powders. The microstructural evolution of the powder induced by the heat treatment was studied and correlated with their deformation behavior during the cold spray deposition. Deposits sprayed with heat-treated powders at 800 and 900 °C and nitrogen showed less particle deformation and higher porosity as compare to as-atomized deposit associated to the presence of delta phase in the powders precipitated by the heat treatment. In contrast; deposits sprayed with helium using both powder conditions; as-atomized and as heat-treated powders; showed high particle deformation and low porosity indicating that the type of gas has a greater effect on the particle deformation than the delta phase precipitated in the heat-treated powders. These results contribute to understanding the role of powder microstructure evolution induced by heat treatment on the cold spray deposits properties.


Author(s):  
Xinliang Xie ◽  
Shuo Yin ◽  
Rija-nirina Raoelison ◽  
Chaoyue Chen ◽  
Christophe Verdy ◽  
...  

2019 ◽  
Vol 50 (7) ◽  
pp. 3373-3387 ◽  
Author(s):  
Tian Liu ◽  
William A. Story ◽  
Luke N. Brewer

2017 ◽  
Vol 49 (2) ◽  
pp. 446-449 ◽  
Author(s):  
William A. Story ◽  
Luke N. Brewer

2009 ◽  
Vol 618-619 ◽  
pp. 377-380 ◽  
Author(s):  
Kevin Spencer ◽  
Daniel Fabijanic ◽  
Ming Xing Zhang

Cold spray coatings are considered promising for surface protection of Mg alloys from wear and corrosion since the process temperature is low enough to avoid oxidation of the Mg or any adverse affects on artificial ageing heat treatments. A special version of cold spray known as Kinetic Metallization has been used to produce pure Al and Al alloy metal matrix composite (MMC) coatings on AZ91 Mg alloy substrates in the present work. This surface treatment produces dense coatings with high adhesive and cohesive strength, which have substantially higher hardness and wear resistance than the AZ91 substrate material. The influence of coating composition and subsequent heat treatment on wear and corrosion performance have been investigated, using pin-on-disc wear tests, salt spray testing and electrochemical polarisation techniques. The heat treatment of the cold spray coatings is compatible with the solutionising and T6 ageing heat treatment of AZ91Mg. The results show that cold spray deposition of MMC coatings is a simple and effective technique for improving the surface properties of Mg alloys, both in the as-cast and in the heat treated condition


2021 ◽  
Vol 405 ◽  
pp. 126676
Author(s):  
Xinliang Xie ◽  
Zhanqiu Tan ◽  
Chaoyue Chen ◽  
Yingchun Xie ◽  
Hongjian Wu ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 1639-1644
Author(s):  
Xin Chu ◽  
Phuong Vo ◽  
Stephen Yue

The splat test is usually generated by low feed rate cold spraying of particles onto an as-polished substrate and it can be considered as a monolayer coating deposition. In this study, in order to investigate cold spray deposition mechanisms, Fe splats were sprayed onto the cold-sprayed single component 316L, Fe, and a composite 90Fe coatings. Results showed that although there is only 3.6 vol.% of 316L in the composite 90Fe coating, Fe splats exhibit a much better deposition behavior onto the 90Fe as compared with the single component Fe coating. To explain this observation, Fe splat samples were characterized using the scanning electron microscope (SEM), optical profilometry, splat adhesion tests, and splat nanoindentation. Finally, a preliminary explanation towards the Fe splat deposition behavior onto the composite coating was drawn.


2021 ◽  
Author(s):  
D. Poirier ◽  
Y. Thomas ◽  
B. Guerreiro ◽  
M. Martin ◽  
M. Aghasibeig ◽  
...  

Abstract A novel powder modification method based on the simultaneous softening and agglomeration of steel powders via heat treatment in a rotary tube furnace has been investigated as a means to improve the cold sprayability of H13 tool steel powder. By adjusting starting powder size and shape as well as heat treatment conditions (maximum temperature, cooling rate, and atmosphere), cold spray of H13 powder went from virtually no deposition to the production of thick dense deposits with a deposition efficiency of 70%. Powder agglomeration, surface state, microstructure evolution, and softening are identified as key factors determining powder deposition efficiency and resulting deposit microstructure.


Sign in / Sign up

Export Citation Format

Share Document