scholarly journals Prediction of Electropulse-Induced Nonlinear Temperature Variation of Mg Alloy Based on Machine Learning

2020 ◽  
Vol 58 (6) ◽  
pp. 413-422
Author(s):  
Jinyeong Yu ◽  
Myoungjae Lee ◽  
Young Hoon Moon ◽  
Yoojeong Noh ◽  
Taekyung Lee

Electropulse-induced heating has attracted attention due to its high energy efficiency. However, the process gives rise to a nonlinear temperature variation, which is difficult to predict using a traditional physics model. As an alternative, this study employed machine-learning technology to predict such temperature variation for the first time. Mg alloy was exposed to a single electropulse with a variety of pulse magnitudes and durations for this purpose. Nine machine-learning models were established from algorithms from artificial neural network (ANN), deep neural network (DNN), and extreme gradient boosting (XGBoost). The ANN models showed an insufficient predicting capability with respect to the region of peak temperature, where temperature varied most significantly. The DNN models were built by increasing model complexity, enhancing architectures, and tuning hyperparameters. They exhibited a remarkable improvement in predicting capability at the heating-cooling boundary as well as overall estimation. As a result, the DNN-2 model in this group showed the best prediction of nonlinear temperature variation among the machinelearning models built in this study. The XGBoost model exhibited poor predicting performance when default hyperparameters were applied. However, hyperparameter tuning of learning rates and maximum depths resulted in a decent predicting capability with this algorithm. Furthermore, XGBoost models exhibited an extreme reduction in learning time compared with the ANN and DNN models. This advantage is expected to be useful for predicting more complicated cases including various materials, multi-step electropulses, and electrically-assisted forming.

2021 ◽  
Author(s):  
Eric Sonny Mathew ◽  
Moussa Tembely ◽  
Waleed AlAmeri ◽  
Emad W. Al-Shalabi ◽  
Abdul Ravoof Shaik

Abstract A meticulous interpretation of steady-state or unsteady-state relative permeability (Kr) experimental data is required to determine a complete set of Kr curves. In this work, three different machine learning models was developed to assist in a faster estimation of these curves from steady-state drainage coreflooding experimental runs. The three different models that were tested and compared were extreme gradient boosting (XGB), deep neural network (DNN) and recurrent neural network (RNN) algorithms. Based on existing mathematical models, a leading edge framework was developed where a large database of Kr and Pc curves were generated. This database was used to perform thousands of coreflood simulation runs representing oil-water drainage steady-state experiments. The results obtained from these simulation runs, mainly pressure drop along with other conventional core analysis data, were utilized to estimate Kr curves based on Darcy's law. These analytically estimated Kr curves along with the previously generated Pc curves were fed as features into the machine learning model. The entire data set was split into 80% for training and 20% for testing. K-fold cross validation technique was applied to increase the model accuracy by splitting the 80% of the training data into 10 folds. In this manner, for each of the 10 experiments, 9 folds were used for training and the remaining one was used for model validation. Once the model is trained and validated, it was subjected to blind testing on the remaining 20% of the data set. The machine learning model learns to capture fluid flow behavior inside the core from the training dataset. The trained/tested model was thereby employed to estimate Kr curves based on available experimental results. The performance of the developed model was assessed using the values of the coefficient of determination (R2) along with the loss calculated during training/validation of the model. The respective cross plots along with comparisons of ground-truth versus AI predicted curves indicate that the model is capable of making accurate predictions with error percentage between 0.2 and 0.6% on history matching experimental data for all the three tested ML techniques (XGB, DNN, and RNN). This implies that the AI-based model exhibits better efficiency and reliability in determining Kr curves when compared to conventional methods. The results also include a comparison between classical machine learning approaches, shallow and deep neural networks in terms of accuracy in predicting the final Kr curves. The various models discussed in this research work currently focusses on the prediction of Kr curves for drainage steady-state experiments; however, the work can be extended to capture the imbibition cycle as well.


2021 ◽  
Vol 2072 (1) ◽  
pp. 012005
Author(s):  
M Sumanto ◽  
M A Martoprawiro ◽  
A L Ivansyah

Abstract Machine Learning is an artificial intelligence system, where the system has the ability to learn automatically from experience without being explicitly programmed. The learning process from Machine Learning starts from observing the data and then looking at the pattern of the data. The main purpose of this process is to make computers learn automatically. In this study, we will use Machine Learning to predict molecular atomization energy. From various methods in Machine Learning, we use two methods namely Neural Network and Extreme Gradient Boosting. Both methods have several parameters that must be adjusted so that the predicted value of the atomization energy of the molecule has the lowest possible error. We are trying to find the right parameter values for both methods. For the neural network method, it is quite difficult to find the right parameter value because it takes a long time to train the model of the neural network to find out whether the model is good or bad, while for the Extreme Gradient Boosting method the time needed to train the model is shorter, so it is quite easy to find the right parameter values for the model. This study also looked at the effects of the modification on the dataset with the output transformation of normalization and standardization then removing molecules containing Br atoms and changing the entry in the Coulomb matrix to 0 if the distance between atoms in the molecule exceeds 2 angstrom.


Author(s):  
Robin Ghosh ◽  
Anirudh Reddy Cingreddy ◽  
Venkata Melapu ◽  
Sravanthi Joginipelli ◽  
Supratik Kar

Alzheimer's disease (AD) is one of the most common forms of dementia and the sixth-leading cause of death in older adults. The presented study has illustrated the applications of deep learning (DL) and associated methods, which could have a broader impact on identifying dementia stages and may guide therapy in the future for multiclass image detection. The studied datasets contain around 6,400 magnetic resonance imaging (MRI) images, each segregated into the severity of Alzheimer's classes: mild dementia, very mild dementia, non-dementia, moderate dementia. These four image specifications were used to classify the dementia stages in each patient applying the convolutional neural network (CNN) algorithm. Employing the CNN-based in silico model, the authors successfully classified and predicted the different AD stages and got around 97.19% accuracy. Again, machine learning (ML) techniques like extreme gradient boosting (XGB), support vector machine (SVM), k-nearest neighbor (KNN), and artificial neural network (ANN) offered accuracy of 96.62%, 96.56%, 94.62, and 89.88%, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mustafa Abed ◽  
Monzur Alam Imteaz ◽  
Ali Najah Ahmed ◽  
Yuk Feng Huang

AbstractEvaporation is a key element for water resource management, hydrological modelling, and irrigation system designing. Monthly evaporation (Ep) was projected by deploying three machine learning (ML) models included Extreme Gradient Boosting, ElasticNet Linear Regression, and Long Short-Term Memory; and two empirical techniques namely Stephens-Stewart and Thornthwaite. The aim of this study is to develop a reliable generalised model to predict evaporation throughout Malaysia. In this context, monthly meteorological statistics from two weather stations in Malaysia were utilised for training and testing the models on the basis of climatic aspects such as maximum temperature, mean temperature, minimum temperature, wind speed, relative humidity, and solar radiation for the period of 2000–2019. For every approach, multiple models were formulated by utilising various combinations of input parameters and other model factors. The performance of models was assessed by utilising standard statistical measures. The outcomes indicated that the three machine learning models formulated outclassed empirical models and could considerably enhance the precision of monthly Ep estimate even with the same combinations of inputs. In addition, the performance assessment showed that Long Short-Term Memory Neural Network (LSTM) offered the most precise monthly Ep estimations from all the studied models for both stations. The LSTM-10 model performance measures were (R2 = 0.970, MAE = 0.135, MSE = 0.027, RMSE = 0.166, RAE = 0.173, RSE = 0.029) for Alor Setar and (R2 = 0.986, MAE = 0.058, MSE = 0.005, RMSE = 0.074, RAE = 0.120, RSE = 0.013) for Kota Bharu.


2019 ◽  
Vol 11 (23) ◽  
pp. 2801 ◽  
Author(s):  
Yonghong Zhang ◽  
Taotao Ge ◽  
Wei Tian ◽  
Yuei-An Liou

Debris flows have been always a serious problem in the mountain areas. Research on the assessment of debris flows susceptibility (DFS) is useful for preventing and mitigating debris flow risks. The main purpose of this work is to study the DFS in the Shigatse area of Tibet, by using machine learning methods, after assessing the main triggering factors of debris flows. Remote sensing and geographic information system (GIS) are used to obtain datasets of topography, vegetation, human activities and soil factors for local debris flows. The problem of debris flow susceptibility level imbalances in datasets is addressed by the Borderline-SMOTE method. Five machine learning methods, i.e., back propagation neural network (BPNN), one-dimensional convolutional neural network (1D-CNN), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost) have been used to analyze and fit the relationship between debris flow triggering factors and occurrence, and to evaluate the weight of each triggering factor. The ANOVA and Tukey HSD tests have revealed that the XGBoost model exhibited the best mean accuracy (0.924) on ten-fold cross-validation and the performance was significantly better than that of the BPNN (0.871), DT (0.816), and RF (0.901). However, the performance of the XGBoost did not significantly differ from that of the 1D-CNN (0.914). This is also the first comparison experiment between XGBoost and 1D-CNN methods in the DFS study. The DFS maps have been verified by five evaluation methods: Precision, Recall, F1 score, Accuracy and area under the curve (AUC). Experiments show that the XGBoost has the best score, and the factors that have a greater impact on debris flows are aspect, annual average rainfall, profile curvature, and elevation.


2021 ◽  
Vol 9 (4) ◽  
pp. 376 ◽  
Author(s):  
Yunfei Yang ◽  
Haiwen Tu ◽  
Lei Song ◽  
Lin Chen ◽  
De Xie ◽  
...  

Resistance is one of the important performance indicators of ships. In this paper, a prediction method based on the Radial Basis Function neural network (RBFNN) is proposed to predict the resistance of a 13500 transmission extension unit (13500TEU) container ship at different drafts. The predicted draft state in the known range is called interpolation prediction; otherwise, it is extrapolation prediction. First, ship features are extracted to make the resistance Rt prediction. The resistance prediction results show that the performance of the RBFNN is significantly better than the other four machine learning models, backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost). Then, the ship data is processed in a dimensionless manner, and the models mentioned above are used to predict the total resistance coefficient Ct of the container ship. The prediction results show that the RBFNN prediction model still performs well. Good results can be obtained by RBFNN in interpolation prediction, even when using part of dimensionless features. Finally, the accuracy of the prediction method based on RBFNN is greatly improved compared with the modified admiralty coefficient.


2021 ◽  
Author(s):  
Zhuo Wang ◽  
Hsin-Yao Wang ◽  
Yuxuan Pang ◽  
Chia-Ru Chung ◽  
Jorng-Tzong Horng ◽  
...  

Multi drug resistant Staphylococcus aureus is one of the major causes of severe infections. Due to the delays of conventional antibiotic susceptibility test (AST), most cases were prescribed by experience with a lower recovery rate. Linking a 7 year study of over 20,000 Staphylococcus aureus infected patients, we incorporated mass spectrometry and machine learning technology to predict the susceptibilities of patients for 4 different antibiotics that can enable early antibiotic decisions. The predictive models were externally validated in an independent patient cohort, resulting in an area under the receiver operating characteristic curve of 0.94 , 0.90, 50 0.86, 0.91 and an area under the precision recall curve of 0.93, 0.87, 0.87, 0.81 for oxacillin (OXA), clindamycin (CLI), erythromycin (ERY) and trimethoprim sulfamethoxazole (SXT), respectively. Moreover, our pipeline provides AST 24-36 h faster than standard workflows, reduction of inappropriate antibiotic usage with preclinical prediction, and demonstrates the potential of combining mass spectrometry with machine learning (ML) to assist early and accurate prescription. Therapies to individual patients could be tailored in the process of precision medicine.


2019 ◽  
Author(s):  
Kasper Van Mens ◽  
Joran Lokkerbol ◽  
Richard Janssen ◽  
Robert de Lange ◽  
Bea Tiemens

BACKGROUND It remains a challenge to predict which treatment will work for which patient in mental healthcare. OBJECTIVE In this study we compare machine algorithms to predict during treatment which patients will not benefit from brief mental health treatment and present trade-offs that must be considered before an algorithm can be used in clinical practice. METHODS Using an anonymized dataset containing routine outcome monitoring data from a mental healthcare organization in the Netherlands (n = 2,655), we applied three machine learning algorithms to predict treatment outcome. The algorithms were internally validated with cross-validation on a training sample (n = 1,860) and externally validated on an unseen test sample (n = 795). RESULTS The performance of the three algorithms did not significantly differ on the test set. With a default classification cut-off at 0.5 predicted probability, the extreme gradient boosting algorithm showed the highest positive predictive value (ppv) of 0.71(0.61 – 0.77) with a sensitivity of 0.35 (0.29 – 0.41) and area under the curve of 0.78. A trade-off can be made between ppv and sensitivity by choosing different cut-off probabilities. With a cut-off at 0.63, the ppv increased to 0.87 and the sensitivity dropped to 0.17. With a cut-off of at 0.38, the ppv decreased to 0.61 and the sensitivity increased to 0.57. CONCLUSIONS Machine learning can be used to predict treatment outcomes based on routine monitoring data.This allows practitioners to choose their own trade-off between being selective and more certain versus inclusive and less certain.


2021 ◽  
Vol 13 (5) ◽  
pp. 1021
Author(s):  
Hu Ding ◽  
Jiaming Na ◽  
Shangjing Jiang ◽  
Jie Zhu ◽  
Kai Liu ◽  
...  

Artificial terraces are of great importance for agricultural production and soil and water conservation. Automatic high-accuracy mapping of artificial terraces is the basis of monitoring and related studies. Previous research achieved artificial terrace mapping based on high-resolution digital elevation models (DEMs) or imagery. As a result of the importance of the contextual information for terrace mapping, object-based image analysis (OBIA) combined with machine learning (ML) technologies are widely used. However, the selection of an appropriate classifier is of great importance for the terrace mapping task. In this study, the performance of an integrated framework using OBIA and ML for terrace mapping was tested. A catchment, Zhifanggou, in the Loess Plateau, China, was used as the study area. First, optimized image segmentation was conducted. Then, features from the DEMs and imagery were extracted, and the correlations between the features were analyzed and ranked for classification. Finally, three different commonly-used ML classifiers, namely, extreme gradient boosting (XGBoost), random forest (RF), and k-nearest neighbor (KNN), were used for terrace mapping. The comparison with the ground truth, as delineated by field survey, indicated that random forest performed best, with a 95.60% overall accuracy (followed by 94.16% and 92.33% for XGBoost and KNN, respectively). The influence of class imbalance and feature selection is discussed. This work provides a credible framework for mapping artificial terraces.


2021 ◽  
Vol 13 (6) ◽  
pp. 1147
Author(s):  
Xiangqian Li ◽  
Wenping Yuan ◽  
Wenjie Dong

To forecast the terrestrial carbon cycle and monitor food security, vegetation growth must be accurately predicted; however, current process-based ecosystem and crop-growth models are limited in their effectiveness. This study developed a machine learning model using the extreme gradient boosting method to predict vegetation growth throughout the growing season in China from 2001 to 2018. The model used satellite-derived vegetation data for the first month of each growing season, CO2 concentration, and several meteorological factors as data sources for the explanatory variables. Results showed that the model could reproduce the spatiotemporal distribution of vegetation growth as represented by the satellite-derived normalized difference vegetation index (NDVI). The predictive error for the growing season NDVI was less than 5% for more than 98% of vegetated areas in China; the model represented seasonal variations in NDVI well. The coefficient of determination (R2) between the monthly observed and predicted NDVI was 0.83, and more than 69% of vegetated areas had an R2 > 0.8. The effectiveness of the model was examined for a severe drought year (2009), and results showed that the model could reproduce the spatiotemporal distribution of NDVI even under extreme conditions. This model provides an alternative method for predicting vegetation growth and has great potential for monitoring vegetation dynamics and crop growth.


Sign in / Sign up

Export Citation Format

Share Document