scholarly journals Designing and Analysis of the TCA Parameters of a Bevel Gear Having Circular Tooth Direction in the Function of the Moment

2019 ◽  
Vol 6 (1) ◽  
pp. 310-328
Author(s):  
Dr. Bodzás Sándor

The aim of this publication is the designing and the CAD modelling of the Gleason – type bevel gear pair and the analysis of the connecting teeth in case of different load moments. The main properties of this gear pair are the changing whole depth along the face width and the circular tooth direction which is created by a complicated cutting tool. Cutting edges are situated along the perimeter of the middle circle by equal circular pitches on the cutting tool. After the creation of the CAD model, which could be created by numerical way, TCA could be done in the function of the moment changing. The normal stress, normal elastic strain and normal deformation will be analyzed on the surface of the driven gear perpendicularly for the tooth surface. Knowing of the results correlations will be visualized based on the TCA results and the load moments. The behavior of the contact teeth will be analyzed.

Author(s):  
Yang Hsueh-Cheng ◽  
Zhong-Wei Huang

In this paper, two normal imaginary helical rack cutters were first established. One of these cutters is a skewed-rack cutter with an asymmetrical straight edge. The other is a rack cutter with an asymmetric parabolic profile. Second, the gear’s tooth surface of the asymmetric parabolic rack cutter is modified to be barrel-shaped based on a variable modulus. The tooth thickness of the gear is gradually reduced along the face width of the tooth from the middle of the tooth surface. Then the coordinate relationship between the gears’ blanks and the imaginary helical rack cutters was established. Through the differential geometry, crowned and uncrowned helical gear pairs were generated. Because of human factors, when the gear pair is installed, it is easy to cause the gear pair edge contact. It is necessary to add artificial assembly error settings through the tooth contact analysis to investigate the kinematic errors and contact conditions of the crowned and uncrowned helical gear pair. The mathematical models and analysis methods proposed for the crowned imaginary rack cutter using variable modulus should be useful for the design and production of double crowned helical gears with asymmetric parabolic teeth.


2013 ◽  
Vol 307 ◽  
pp. 304-307 ◽  
Author(s):  
Aref Bahramighahnavieh ◽  
Peiman Mosaddegh ◽  
Saleh Akbarzadeh

In this paper, a model has been developed for calculating the Hertzian stress distribution of straight bevel gear. One pair of straight bevel gear teeth replaced with multiple pairs of spur gear teeth by using Tredgold approximation. The transmitted load and radii of curvature are evaluated and used to determine the stress distribution. The results show that these stresses are constant along the face width of tooth. Moreover, the magnitude of theses stresses are in good agreement with the simulation results using commercial ABAQUS software


Author(s):  
Carlos H. Wink

In this study, tooth root stresses of helical gear pairs with different combinations of face width increase and offsets were analyzed. Contact face width was kept constant. The variables studied were face width and gear faces offset. The well-known LDP – Load Distribution Program was used to calculate tooth root stresses using a finite element model. The results presented show that the face width increase and offset have a significant influence on tooth root stresses. In some cases, increasing face width of one gear pair member resulted in significant increase of tooth root stress of the other member. For gear pairs with unequal and offset face widths, tooth root stresses were mostly affected when face widths were increased to the same direction of the contact line travel direction.


2020 ◽  
Vol 213 ◽  
pp. 02029
Author(s):  
Baichao Wang ◽  
Xue Zhang ◽  
Litong Zhang ◽  
Xianting Lu

In this paper, a mathematical model of meshing motion of three degree of freedom involute spherical gear pair is constructed. The mathematical model can realize continuous meshing transmission between gear pairs without transmission principle error. Based on the meshing principle and motion analysis of the gear, the tooth profile of the spherical gear is designed by combining the two tooth surfaces of the involute ring gear and the hemispherical bevel gear. According to the conjugate motion relationship of spherical gear pair, a mathematical model of arc tooth surface of hemispherical bevel gear is established, and the mathematical description of the tooth profile of spherical gear is completed by combining the equation of ring tooth surface. It provides the basis and Reference for the meshing design of ball gear.


2021 ◽  
Author(s):  
Jianjun Yin ◽  
Han Wu ◽  
Zheng Ji ◽  
Maile Zhou ◽  
Ruipeng Guo

Abstract The bevel gear transmission with crossed axes is widely used, but there are the difficulty of tooth profile calculation and modeling in the design and manufacturing process. This paper analyzes firstly the parameter solving equation of the bevel gear pair with arbitrary crossed axes. Based on the meshing principle of the bevel gear pair and numerical analysis method, the meshing equations of the bevel gear pair with crossed axes are derived, which provide the calculation models for the design of spatial bevel gear tooth surface. Taking the bevel gear pair with crossed axes in two kinds of the knotter as two design examples, the geometric parameters of the bevel gear pair in the knotter are solved, and the mathematical models of the tooth surface are programmed and calculated by using MATLAB. Through the graphic display of the tooth surface point set under MATLAB software and the 3D modeling function of Pro/Engineering software, the accurate 3D models of the bevel gear tooth surface are established. The meshing transmission simulations of the established bevel gear pair are respectively carried out by using ADAMS, and their physical prototype and transmission tests are also implemented. The test results showed that the transmission of the designed bevel gear pair is accurate and stable, which proves the correctness of the derived calculation model of the tooth surface of the bevel gear with crossed axes.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Xiaoyu Sun ◽  
Yanping Liu ◽  
Yongqiang Zhao ◽  
Ming Liu

The actual contact point of a spiral bevel gear pair deviates from the theoretical contact point due to the gear deformation caused by the load. However, changes in meshing characteristics due to the migration of contact points are often ignored in previous studies on the elastohydrodynamic lubrication (EHL) analysis of spiral bevel gears. The purpose of this article is to analyze the impact of contact point migration on the results of EHL analysis. Loaded tooth contact analysis (LTCA) based on the finite element method is applied to determine the loaded contact point of the meshing tooth pair. Then, the osculating paraboloids at this point are extracted from the gear tooth surface geometry. The geometric and kinematic parameters for EHL simulation are determined according to the differential geometry theory. Numerical solutions to the Newtonian isothermal EHL of a spiral bevel gear pair at the migrated and theoretical contact points are compared to quantify the error involved in neglecting the contact point adjustment. The results show that under heavy-loaded conditions, the actual contact point of the deformed gear pair at a given pinion (gear) roll angle is different from the theoretical contact point considerably, and so do the meshing parameters. EHL analysis of spiral bevel gears under significant load using theoretical meshing parameters will result in obvious errors, especially in the prediction of film thickness.


2015 ◽  
Vol 788 ◽  
pp. 102-107
Author(s):  
Evgeniy V. Pavlov ◽  
Leonid M. Chervyakov

The possibility to improve the conditions of cutting rotary workpieces with intermittent areas by applying conventional tool materials is limited. However the use of tools with working members made from polycrystalline ultra-hard materials (composites) can be very efficient, provided that a negative influence of load impacts on the tool point and the major cutting edge at the moment of the tool lead-in is mitigated.The described method of turning (boring) intermittent surfaces offers more rational conditions for the contact between the tool cutting member and machined workpiece surface and permits eliminating negative effects of impact loads on the tool point. Proper conditions of cutting intermittent surfaces by tools made from 03 composite (petbor) or 10 composite (hexanite-r) can improve machining efficiency by up to 25% due to the intensification of cutting operations as well as to decrease tool purchase expenses by about 20%.


Author(s):  
Binghe Wang ◽  
Jie Tang ◽  
Zhaoyao Shi

In order to measure the transmission error of bevel gear pair, a measurement method of transmission error based on the best mounting distance was introduced. The algorithm of adjustment of the best mounting distance was presented, and the single flank testing of bevel gear pair was carried out on this position. The evaluation of transmission error and frequency spectrum was described. Measurement and control software was developed including the function of data acquisition and processing and graphic display, optimizing search of best mounting distance and SPC statistical analysis. The class diagram, the sequence diagram, the test case diagram and the main interface of the software was designed. The experiment was carried out that the mounting distance on 130.0mm of pinion is the best mounting distance according to the value of the factor F 0.699. Under the best mounting distance, the total tangential composite deviation is 79.27μm. The method and the software mentioned in this paper can be used in measurement of the bevel gear pair or the face gear pair.


Author(s):  
Michael Benatar ◽  
Michael Handschuh ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract For a gear pair, both the contact pattern and the transmission error (TE) significantly impact durability and fatigue life. Design and manufacturing processes are often aimed at improving the contact pattern and reducing the overall TE. Other errors, such as runout and wobble, are often induced during the installation of power transmission systems, and they can alter the contact pattern and TE of an otherwise well-designed gear pair. This study provides a methodology to experimentally investigate the impact of wobble errors on the contact pattern and static transmission error (STE) of helical gears. It first provides a description of the modifications to an existing test machine. Next, it describes the gear specifications, preliminary testing matrix, data acquisition and processing procedure, as well as the experimental results obtained with regards to both the contact pattern and STE. The following are observed while describing the experimental results. For a test with no wobble and no runout, the contact pattern remains the same at every rotational position. However, by introducing even a small amount of wobble, the contact will shift from one side of the face width of the gear to the opposite side of the face width of the gear within one revolution. Introduction of wobble may increase the STE and sideband activity around gear mesh harmonics, especially as torque increases. Yet the modest increases in STE and sideband activity seen with the introduction of wobble are not enough to make definitive conclusions. The feasibility of the modified test setup has been demonstrated, and preliminary results have been presented. However, additional data collection should be completed in order to study the impact of runout and wobble on both spur and helical gear pairs with various microgeometry modifications and manufacturing errors.


Sign in / Sign up

Export Citation Format

Share Document