scholarly journals FEATURES OF GEODECTIC NETWORKS DENSIFICATION ON THE EXAMPLE OF A RAILWAY BRIDGE CROSSING CONSTRUCTION ACROSS THE KERCHEN STRAIT

2020 ◽  
Vol 1 (1) ◽  
pp. 93-105
Author(s):  
Victor P. Goluk ◽  
Denis G. Nazarov

The geodetic center base for the construction of bridge structures is the basis of all measurement work. Often it is necessary to carry out the densification of the geodetic center base in compliance with the necessary accuracy of recoverable structures. In the process of geodesic control of the construction of a railway bridge on Section No. 3 of the channel between Tuzlinsky Spit and Tuzla Island, difficulties arose in bringing the project to life at all stages of the construction of a structure associated with the low density of geodetic center base points located in the aquatic area. Based on the above the geodesic service of the LLC “Bridge Bureau” carried out work on the concentration of the geodetic center at the construction site of the bridge crossing (the working bridge RM-1 - site No. 3), as well as taking into account: Section 4 of the joint venture 126.13330.2017 "Geodetic works in construction", GOST 21780-2006 "System for ensuring the accuracy of geometrical parameters in construction. Calculation of accuracy ", as well as SP 46.13330.2012" Bridges and pipes." An a priori assessment of the accuracy of the measurement results for each of the methods for monitoring the planning and altitude position of the condensation points was made. A combined approach to densification of the geodetic center base is suggested.

2021 ◽  
Vol 244 ◽  
pp. 05014
Author(s):  
Gennady Gladkov ◽  
Konstantin Morgunov ◽  
Yuri Ivanovsky

The results of laboratory modeling of the influence of the bridge crossing supports erected during the construction of the highway near the existing railway bridge on the flow characteristics in the channel of the Neva River are presented. Modeling was carried out for two options for the location of the new bridge supports relative to the existing bridge structures. The limits of changes in the characteristics of the river flow are taken into account - the maximum, minimum and residual flows and benchmarks of the water level in the channel. Studies have shown that the construction of the designed bridge supports in the channel does not cause significant changes in the flow structure. There is a redistribution of the flow rate in the sections of the existing and designed bridges. The average velocities in the navigable span of the existing bridge are somewhat reduced when new supports are built. The velocity diagram is aligned along the width of the central and side spans, and a vortex wake is more clearly formed in the area behind the supports.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012020
Author(s):  
Guangfa Sun

Abstract Aiming at the problem of detection and location of magnetic targets in water beach, the acoustic magnetic composite detection method is studied. After the sonar obtains the image of the suspicious object in the target area, the magnetic target recognition and location are realized by using the abnormal magnetic field distribution data near the target area measured by the shipborne magnetic sensor and the multi-sensor information fusion method. A target recognition and location method based on a priori information is proposed to solve the problem that the measurement results of magnetic sensor can not fully reflect the influence of ferromagnetic target on the surrounding magnetic field due to terrain constraints. In order to make up for this lack of information, taking the sonar measurement results as a priori information, the hypothesis test method is adopted to make full use of all the measurement results of different types of sensors to realize the recognition and positioning of magnetic targets.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1210-1219 ◽  
Author(s):  
Arturas Kilikevicius ◽  
Antanas Fursenko ◽  
Mindaugas Jurevicius ◽  
Kristina Kilikeviciene ◽  
Gintautas Bureika

The durability and endurance of the exploitation of railway bridges depend on the intensity and the manner of the static and dynamic loads affecting them. Heavy freight trains passing the bridges cause huge vertical and dual-axis vibrations, which are evidenced by the fatigue of the construction of the bridge. The scatter of the acceleration intensity of the railway bridge vibratory oscillation and their parameters are analysed while applying the theory of covariation functions. The results of the measurements of the intensity of the acceleration of vibratory oscillation in the points of support beams recorded in the timescale in the form of arrays (matrixes). Applied covariance function method provides measurement equipment and experimental simplicity of the analysis of the railway bridge vibration signals. The standard scores of mutual covariation functions of the array of the measurement results of the acceleration of digital vibratory oscillation and the standard scores of the auto-covariance functions of separate arrays are altering considering the interval of quantization in the timescale. Results gained by analysis prove the advantage of the rationed auto-covariational functions method while analysing the dynamic oscillation of bridges.


1975 ◽  
Vol 58 (1) ◽  
pp. 95-99 ◽  
Author(s):  
JE SPINDEL ◽  
DF GOODMAN ◽  
AM SOWDEN ◽  
PJG WIGLEY ◽  
GJ LUCAS

Author(s):  
Norbert Kockmann ◽  
Michael Engler ◽  
Claus Fo¨ll ◽  
Peter Woias

Micro mixers are an integral part of several micro fluidic devices like micro reactors or analytical equipment. Due to the small dimensions, laminar flow is expected a priori in those devices while the mass transfer is supposed to be dominated by diffusion. A detailed numerical CFD-study by CFDRC-ACE+ of simple static mixers shows a significant deviation from strictly laminar flow in a wide range of Reynolds numbers Re, channel dimensions, and types of cross sections (square, rectangular, trapezoidal). With increasing flow velocity and Re number the flow starts to form vortexes at the entrance of the mixing channel. The vortexes are symmetrical to the symmetry planes of the mixing channel, both for the rectangular and the trapezoidal cross sections investigated here. With further increasing velocity the flow tends to instabilities, which causes a breakup of the flow symmetry. These instabilities are generally found in T-shape mixers with symmetrical flow conditions, but not always in Y-shape mixers or with asymmetrical flow conditions. Within the laminar flow regime diffusive mass transfer is dominant. In this case the mixing quality at constant channel length becomes worse with increasing velocity. This effect can almost be equalized by the onset of the vortex regime, which enhances the mass transfer by convective transport. This paper shows the mixing quality at a certain length for different geometrical parameters and flow conditions.


2017 ◽  
Author(s):  
Nathan D Olson ◽  
Justin M Zook ◽  
Jayne B Morrow ◽  
Nancy J Lin

High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Therefore, high sensitivity methods not requiring a priori assumptions about the contaminant are needed. We demonstrate the use of whole genome sequencing (WGS) and a metagenomic taxonomic classification algorithm for assessing the organismal purity of a microbial material. Using this proposed method we characterized the types of false positive contaminants reported and the dependence of detectable contaminant concentration on material and contaminant genome using simulated WGS data. Using the proposed method to characterize microbial material purity will help to ensure that the materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods are free of contaminants adversely impacting measurement results.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 253
Author(s):  
Iftikhar Hussain ◽  
Dong-Kyun Woo

In this paper, a new method to calculate the self-inductance of the Archimedean spiral coil is presented. The proposed method is derived by solving Neumann’s integral formula, and the numerical tool is used to calculate the inductance value. The calculation results are verified with several conventional formulas derived from the Wheeler formula or its modified form and 3D finite element analyses. The comparison with simulation results shows that the conventional formula has an error of above 40% compared to the proposed method, which has below 7% when the wire diameter is reduced. To further check the validity, different sizes of the spiral coil are fabricated by changing the geometrical parameters such as the number of turns, turn spacing, inner radius, outer radius, and wire diameter. Litz wire is chosen for making the spiral coil, and bobbins are made using a 3D printer. Finally, the calculation results are compared with the experimental result. The error between them is less than 2%. The comparison with the conventional formulas, simulation, and measurement results shows the accuracy of the proposed method. This method can be used to calculate the self-inductance of wireless power coils, inductors and antenna design.


2021 ◽  
Author(s):  
◽  
Guillem Barroso Gassiot

Latest developments in high-strength Magnetic Resonance Imaging (MRI) scanners, with in-built high resolution, have dramatically enhanced the ability of clinicians to diagnose tumours and rare illnesses. However, their high-strength transient magnetic fields induce unwanted eddy currents in shielding components, which result in high-frequency vibrations, noise, imaging artefacts and, ultimately, heat dissipation and boiling off of the helium used to super-cool the magnets. Optimum MRI scanner design requires the capturing of complex electro-magneto-mechanical interactions with high fidelity computational tools. Moreover, manufacturing new MRI scanners still represents a computational challenge to industry due to the large variability in material parameters and geometrical configurations that need to be tested during the early design phase. This process can be highly optimised through the employment of user-friendly computational metamodels constructed on the basis of Reduced Order Modelling (ROM) techniques, where high-dimensional parametric offline solutions are obtained, stored and assimilated in order to be efficiently queried in real time.This thesis presents a novel a priori Proper Generalised Decomposition (PGD) computational framework for the analysis of the electro-magneto-mechanical inter-actions in the context of MRI scanner design to address the urgent need for the development of new cost-effective methods, whereby previously performed compu-tations can be assimilated as training solutions of a surrogate digital twin model to allow for real-time simulations. The PGD methodology is derived for coupled electro-magneto-mechanical problems in an axisymmetric Lagrangian setting, in-cluding the possibility to vary several material and geometrical parameters (as part of the high-dimensional offline solution), that are relevant for the industrial part-ner of the project, Siemens Healthineers. A regularised-adaptive strategy and a staggered PGD approach are proposed in order to enhance the accuracy and robust-ness of the PGD algorithm while preserving its a priori nature. The Lagrangian adaptation of the governing equations will allow for a comparison between staggered and monolithic solvers, where the staggered approach will be shown to enhance the robustness and accuracy of the PGD technique. Moreover, geometric changes in the computational domain will be accounted for in the PGD solution by using a PGD-projection technique that will enable the computation of a separable expression even for geometrical variations, preserving thus the efficiency of the online PGD stage. A set of numerical problems will be presented in order to validate the PGD formula-tion, which will be benchmarked against the full order (reference) model. Moreover, a comparison between two families of ROM methods, the a priori PGD and the a posteriori Proper Orthogonal Decomposition (POD), will also be performed in order to assess and compare different ROM strategies.


Sign in / Sign up

Export Citation Format

Share Document