scholarly journals Self-Inductance Calculation of the Archimedean Spiral Coil

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 253
Author(s):  
Iftikhar Hussain ◽  
Dong-Kyun Woo

In this paper, a new method to calculate the self-inductance of the Archimedean spiral coil is presented. The proposed method is derived by solving Neumann’s integral formula, and the numerical tool is used to calculate the inductance value. The calculation results are verified with several conventional formulas derived from the Wheeler formula or its modified form and 3D finite element analyses. The comparison with simulation results shows that the conventional formula has an error of above 40% compared to the proposed method, which has below 7% when the wire diameter is reduced. To further check the validity, different sizes of the spiral coil are fabricated by changing the geometrical parameters such as the number of turns, turn spacing, inner radius, outer radius, and wire diameter. Litz wire is chosen for making the spiral coil, and bobbins are made using a 3D printer. Finally, the calculation results are compared with the experimental result. The error between them is less than 2%. The comparison with the conventional formulas, simulation, and measurement results shows the accuracy of the proposed method. This method can be used to calculate the self-inductance of wireless power coils, inductors and antenna design.

2015 ◽  
Vol 26 (s1) ◽  
pp. S405-S412
Author(s):  
Ziyi Zhang ◽  
Peiguo Liu ◽  
Dongming Zhou ◽  
Liang Zhang ◽  
Liang Ding

2021 ◽  
Vol 1 (24) ◽  
Author(s):  
Ekaterina Prokshits ◽  
Sergey Gridnev ◽  
Olga Sotnikova ◽  
Iana Zolotukhina

The task was set, due to the capabilities of modern software systems, to assess the effect of the increase in inelastic deformations under prolonged load action on the loss of stability of thin-walled dome coverings. The study of the dependences of the forms of the loss of stability of dome covering from creep concrete that will help further with optimization calculations when determining of the most influencing parameters of designs. Calculation results of thin-walled concrete dome roof of circular outline under the influence of operational loadings with use of two modern program complexes are given in article. It is investigated intense and deformation condition of dome coverings as a part of construction from position of forecasting of possible forms of loss of stability, with use of opportunities of the final and element «MidasCivil» computer system. In work provisions of the theory of elasticity, mechanics of deformation of solid body, construction mechanics and also methods of mathematical modeling based on application of finite element method are used. The received results give the chance to rationally select geometrical parameters and material of design and also to set structural strength safety factors at the solution of problems of stability of different covers taking into account possible creep of material.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2983
Author(s):  
He Xiang ◽  
Yaming Jiang ◽  
Yexiong Qi ◽  
Jialu Li

In order to characterize the process-induced distortions of 3D thin shell composites with complex shape, the multilayered biaxial weft knitted (MBWK) fabric reinforced high-performance composite helmet was selected as the research object, and the 3D laser scanning machine was used to scan the helmet surface, then the 3D scanning data was compared with the CAD model to evaluate the deformation. The results and discussion indicated that the conventional method was workable, but the speed of convergence was slow and the calculation results were easy to drop into local optimization. According to detailed analysis, a measurement method focusing on the principle of “Feature Distance” was developed. The measurement results shown that this method can not only give accurate results, but also reduce working procedure and greatly save the computing resources, which is proved to be a feasible approach for the deformation measurement foundation of 3D thin shell textile composites.


1997 ◽  
Vol 119 (2) ◽  
pp. 348-356 ◽  
Author(s):  
J. L. Hoke ◽  
A. M. Clausing ◽  
T. D. Swofford

An experimental investigation of the air-side convective heat transfer from wire-on-tube heat exchangers is described. The study is motivated by the desire to predict the performance, in a forced flow, of the steel wire-on-tube condensers used in most refrigerators. Previous investigations of wire-on-tube heat exchangers in a forced flow have not been reported in the literature. The many geometrical parameters (wire diameter, tube diameter, wire pitch, tube pitch, etc.), the complex conductive paths in the heat exchanger, and the importance of buoyant forces in a portion of the velocity regime of interest make the study a formidable one. A key to the successful correlation of the experimental results is a definition of the convective heat transfer coefficient, hw, that accounts for the temperature gradients in the wires as well as the vast difference in the two key characteristic lengths—the tube and wire diameters. Although this definition results in the need to solve a transcendental equation in order to obtain hw from the experimental data, the use of the resulting empirical correlation is straightforward. The complex influence of the mixed convection regime on the heat transfer from wire-on-tube heat exchangers is shown, as well as the effects of air velocity and the angle of attack. The study covers a velocity range of 0 to 2 m/s (the Reynolds number based on wire diameter extends to 200) and angles of attack varying from 0 deg (horizontal coils) to ±90 deg. Heat transfer data from seven different wire-on-tube heat exchangers are correlated so that 95 percent of the data below a Richardson number of 0.004, based on the wire diameter, lie within ±16.7 percent of the proposed correlation.


Joule ◽  
2018 ◽  
Vol 2 (9) ◽  
pp. 1654-1656 ◽  
Author(s):  
Yue Yu ◽  
Yunhai Zhu ◽  
Xinbo Zhang

2015 ◽  
Vol 22 (2) ◽  
pp. 23-31 ◽  
Author(s):  
Hassan Ghassemi ◽  
Mojtaba Kamarlouei ◽  
Sajad Taj Golah Veysi

AbstractNowadays all efforts in planing hull research are focused on resistance reduction for achieving the highest speed in fast planing crafts. Furthermore, many fruitful research projects have been carried out on marine coatings, planing equipment, and optimization of propeller and hull form, which revolutionized industry of high - speed crafts and made them an efficient survival vehicle in coastal areas and rivers. In this paper the hydrodynamic performance of planing hulls are investigated by means of a modified Savitsky model for both non-stepped and stepped bodies. Meanwhile, in order to meet this goal reasonably, effective geometrical parameters of planing hull are investigated and then operational hydrodynamic characteristics of the craft are predicted by using a computational program. Finally, the calculation results are verified by means of a CFD-analysis model.


2012 ◽  
Vol 466-467 ◽  
pp. 951-955
Author(s):  
Jun Qing Zhan ◽  
Xiao Mei Feng ◽  
Li Shun Li ◽  
Xiang De Meng

The self-loading device used for side-crane is put forward. Its structure is presented. Based on the force analysis when the side-crane works at flat ground, the mathematical model is established when the crane working at uneven ground. And the design calculation is performed. The self-loading device’s optimal design is accomplished. Based on the above calculation results, the self-loading prototype is manufactured. And the design method can be adopted to the similar equipment’s structural design.


2018 ◽  
Vol 8 (2) ◽  
pp. 142-145
Author(s):  
Olga A. BALANDINA

Presents the results of a numerical calculation of the interaction of the jet of carbon dioxide from smashing subsonic air fl ow. Were identifi ed and analyzed pressure values, the trajectories of the jet, the velocity profi les at small blowing intensities. The comparison of calculation results with experimental data of other authors. The obtained curves of the temperature distribution for carrying air fl ow and the jet issued from a slit-like holes with aspect ratios 1:2; 1:3; 1:4. Analysis of the results showed that the geometrical parameters of the jet blowing holes does not signifi cantly aff ect the temperature distribution in the region behind the jet. The research results can be used in the design of the jet bodies of the gas burners of boilers. Will conduct further modeling to enhance the process of formation of the gas-air mixture in the gas jet type burners.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850021 ◽  
Author(s):  
S. Thangarasu ◽  
V. Siva ◽  
S. Athimoolam ◽  
S. Asath Bahadur

Organic nonlinear optical co-crystals 2-aminopyrimidine benzoic acid (2APB) and 2-aminopyrimidine succinic acid (2APS) have been successfully grown by slow solvent evaporation method at room temperature. The structural characterization of the grown crystals was carried out by single crystal X-ray diffraction. Fourier transform infrared spectroscopy (FT-IR) and FT-Raman spectra of the grown crystals are recorded and the observed vibrational frequencies are assigned. The hybrid computational calculations are carried out by Hartree–Fock (HF) and density functional theory (DFT) (3-parameter, Lee-Yang-Parr (B3LYP)) methods with 6-311[Formula: see text]G(d,p) basis sets and the corresponding results are tabulated. The geometrical parameters of the molecules also have been analyzed. The computed vibrational spectra were compared with experimental result which shows appreciable agreement. The chemical hardness, electronegativity, chemical potential and electrophilicity index were determined by highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) plot. The grown crystals were subjected to population analysis, thermal, linear and nonlinear optical studies of materials. The calculated second-order hyperpolarizability values of these materials are nearly two to four times that of urea.


2011 ◽  
Vol 8 (1) ◽  
pp. 015-026
Author(s):  
Ewa Błazik-Borowa

The paper is devoted to the problem of boundary conditions influence on the quality of the solution obtained with use of k-ε turbulence models. There are calculation results for different boundary conditions and two methods: standard k-ε and RNG k-ε in the paper. The flow parameters obtained from the calculation are compared with our own measurement results. Moreover, the influence of input data on the inflow edge on sensitivity coefficients is shown and analysed in the paper. The research is performed for components of velocity and turbulence kinetic energy.


Sign in / Sign up

Export Citation Format

Share Document