scholarly journals Application of data simulation procedure for troposphere GNSS tomography tasks

2021 ◽  
Vol 41 (I) ◽  
pp. 61-67
Author(s):  
S. SAVCHUK ◽  
◽  
A. KHOPTAR ◽  

The content and distribution of water vapor in the Earth’s atmosphere are related to various weather conditions and climatic processes, and are therefore important for understanding many meteorological phenomena. At the current stage of development and formation of Global Navigation Satellite Systems (GNSS), the distribution of water vapor content can be established using such observations from GNSS tomography, which, in turn, allows to study changes in the vertical profile of water vapor content in the Earth’s troposphere. In troposphere GNSS tomography, accurate information on the distribution of water vapor is obtained using integrated measurements, such as the water vapor content value in the slant direction (Slant Water Vapor, SWV). The essence of the problem of troposphere GNSS tomography is the solution of equations system, the number of which is limited by the number of satellites involved in observations. In this case, the functional relationship between observations and unknowns, in the pathways of GNSS signals through the troposphere, must be known in sufficient numbers. However, today there is a problem of lack of such information, which leads to the main problem of the troposphere GNSS-tomography method – overcoming the deficit of rank in the inversion of the original equation. This problem can be solved by increasing the number of satellite signals in a wide range of positions. The purpose of this work is to maximize the use ofGNSS signals inmodeling tomographic solutions based on data simulation. Method. Based on the developed method of multi-GNSS observations data processing by the PPP method, an algorithm of the procedure of simulation of additional satellites in tomographic modeling in order to overcome the problems of rank deficit is proposed. Results. The results of application of the data simulation procedure for the vertical profile of water vapor content in the Earth’s troposphere are presented based on the results of processingGNSS observations at the GANP station (Poprad, Slovakia) in the period from 31.05.2019 to 1.06.2019. Scientific novelty and practical significance. For the first time, an algorithm for the procedure of additional satellites simulation was proposed in order to overcome the problems of rank deficit in the tomographic modeling.

2017 ◽  
Author(s):  
Monica Campanelli ◽  
Alessandra Mascitelli ◽  
Paolo Sanò ◽  
Henri Diémoz ◽  
Victor Estellés ◽  
...  

Abstract. The estimation of the precipitable water vapor content (W) with high temporal and spatial resolution is of great interest in both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed, in order to obtain accurate and frequent measurements of this atmospheric parameter. Among them, the relative low cost and easy deployment of sun-sky radiometers, or sun-photometers, operating in several international networks, allowed the development of automatic estimations of W from these instruments with high temporal resolution. However the great problem of this methodology is the estimation of the sun-photometric calibration parameters. The objective of this paper is to validate a new methodology based on the hypothesis that the calibration parameters characterizing the atmospheric transmittance at 940 nm are dependent on vertical profiles of temperature, air pressure and moisture typical of each measurement site. To obtain the calibration parameters some simultaneously seasonal independent measurements of W taken over a large range of solar zenith angle and covering a wide range of W, are needed. In this work yearly GNSS/GPS dataset were used for obtaining a table of photometric calibration constants and the methodology was applied and validated in three European ESR-SKYNET network sites, characterized by different atmospheric and climatic conditions: Rome, Valencia and Aosta. Results were validated against the GNSS/GPS and AErosol Robotic NETwork (AERONET) W estimations. In both the validations the agreement was very high with a percentage RMSD of about 6 %, 13 % and 8 % in the case of GPS intercomparison at Rome, Aosta and Valencia, respectively, and of 8 % in the case of AERONET comparison in Valencia. Analysing the results by W classes, the present methodology was found to clearly improve W estimation at low W content when compared against AERONET in term of %Bias, bringing the agreement with the GPS (considered the reference one), from a %Bias of 5.76 to 0.52.


2019 ◽  
Vol 70 (7) ◽  
pp. 2330-2334
Author(s):  
Mihaela Ciopec ◽  
Adina Negrea ◽  
Narcis Duteanu ◽  
Corneliu Mircea Davidescu ◽  
Iosif Hulka ◽  
...  

Arsenic content in groundwater�s present a wide range of concentration, ranging from hundreds of micrograms to thousands of micrograms of arsenic per litter, while the maximum permitted arsenic concentration established by World Health Organization (WHO) is 10 mg L-1. According to the WHO all people, regardless of their stage of development and their social economic condition, have the right to have access to adequate drinking water. The most efficient and economic technique used for arsenic removal is represented by adsorption. In order to make this remediation technique more affordable and environmentally friendly is important to new materials with advance adsorbent properties. Novelty of present paper is represented by the usage of a new adsorbent material obtained by physical - chemical modification of Amberlite XAD polymers using crown ethers followed by iron doping, due to well-known affinity of arsenic for iron ions. Present paper aims to test the obtained modified Amberlite polymer for arsenic removal from real groundwater by using adsorption in a fixed bed column, establishing in this way a mechanism for the adsorption process. During experimental work was studied the influence of competing ions from real water into the arsenic adsorption process.


Explanations are very important to us in many contexts: in science, mathematics, philosophy, and also in everyday and juridical contexts. But what is an explanation? In the philosophical study of explanation, there is long-standing, influential tradition that links explanation intimately to causation: we often explain by providing accurate information about the causes of the phenomenon to be explained. Such causal accounts have been the received view of the nature of explanation, particularly in philosophy of science, since the 1980s. However, philosophers have recently begun to break with this causal tradition by shifting their focus to kinds of explanation that do not turn on causal information. The increasing recognition of the importance of such non-causal explanations in the sciences and elsewhere raises pressing questions for philosophers of explanation. What is the nature of non-causal explanations—and which theory best captures it? How do non-causal explanations relate to causal ones? How are non-causal explanations in the sciences related to those in mathematics and metaphysics? This volume of new essays explores answers to these and other questions at the heart of contemporary philosophy of explanation. The essays address these questions from a variety of perspectives, including general accounts of non-causal and causal explanations, as well as a wide range of detailed case studies of non-causal explanations from the sciences, mathematics and metaphysics.


2014 ◽  
Vol 6 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Chun Chang ◽  
Ping Feng ◽  
Fawen Li ◽  
Yunming Gao

Based on the Haihe river basin National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data from 1948 to 2010 and the precipitation data of 53 hydrological stations during 1957–2010, this study analyzed the variation of water vapor content and precipitation, and investigated the correlation between them using several statistical methods. The results showed that the annual water vapor content decreased drastically from 1948 to 2010. It was comparatively high from the late 1940s to the late 1960s and depreciated from the early 1970s. From the southeast to the northwest of the Haihe river basin, there was a decrease in water vapor content. For vertical distribution, water vapor content from the ground to 700 hPa pressure level accounted for 72.9% of the whole atmospheric layer, which indicated that the water vapor of the Haihe river basin was mainly in the air close to the ground. The precipitation in the Haihe river basin during 1957–2010 decreased very slightly. According to the correlation analysis, the precipitation and water vapor content changes showed statistically positive correlation, in addition, their break points were both in the 1970s. Furthermore, the high consistency between the precipitation efficiency and precipitation demonstrates that water vapor content is one of the important factors in the formation of precipitation.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2021 ◽  
Vol 13 (11) ◽  
pp. 2179
Author(s):  
Pedro Mateus ◽  
Virgílio B. Mendes ◽  
Sandra M. Plecha

The neutral atmospheric delay is one of the major error sources in Space Geodesy techniques such as Global Navigation Satellite Systems (GNSS), and its modeling for high accuracy applications can be challenging. Improving the modeling of the atmospheric delays (hydrostatic and non-hydrostatic) also leads to a more accurate and precise precipitable water vapor estimation (PWV), mostly in real-time applications, where models play an important role, since numerical weather prediction models cannot be used for real-time processing or forecasting. This study developed an improved version of the Hourly Global Pressure and Temperature (HGPT) model, the HGPT2. It is based on 20 years of ERA5 reanalysis data at full spatial (0.25° × 0.25°) and temporal resolution (1-h). Apart from surface air temperature, surface pressure, zenith hydrostatic delay, and weighted mean temperature, the updated model also provides information regarding the relative humidity, zenith non-hydrostatic delay, and precipitable water vapor. The HGPT2 is based on the time-segmentation concept and uses the annual, semi-annual, and quarterly periodicities to calculate the relative humidity anywhere on the Earth’s surface. Data from 282 moisture sensors located close to GNSS stations during 1 year (2020) were used to assess the model coefficients. The HGPT2 meteorological parameters were used to process 35 GNSS sites belonging to the International GNSS Service (IGS) using the GAMIT/GLOBK software package. Results show a decreased root-mean-square error (RMSE) and bias values relative to the most used zenith delay models, with a significant impact on the height component. The HGPT2 was developed to be applied in the most diverse areas that can significantly benefit from an ERA5 full-resolution model.


Author(s):  
L.R. Girfanova ◽  
◽  
R.R. Abdyrasulova ◽  

The development of digital technologies offers a wide range of opportunities to increase production efficiency, which relies on known tools and methods that transform in modern conditions. Many researchers note that the specialization most characteristic of complex knowledge-intensive industries has high prospects and is evident in all sectors of the national economy. Its combination with cooperation and outsourcing brings momentum to the development of both individual enterprises and the industry as a whole. It has been found that in light industry, which had a developed system of specializations, the return to this practice is difficult due to significant changes in the industries related to the liquidation of large mass production enterprises and the lag in the creation of digital twins, which are the basis at the stage of production preparation. Lost in the process of transition to a market economy, large production with a complete cycle is now successfully replaced by specialized small and medium-sized production, using high-performance equipment combined with modern digital technologies. It is obvious that the garment industry has entered a new cycle of development characterized by a high degree of specialization against the background of the application of digital technologies at all stages of the product life cycle. The significant lag in the application of digital technologies at the stage of production of light industry products is overcome, especially in the transition to additive technologies. It is noted that the digital shadow complements the information digital twin, which is especially relevant from the point of view of production. The introduction of digital technologies in specialized industries allows to achieve higher productivity and payback of invested capital than in standard production, where such investment is "blurred" due to the lag of related processes of the enterprise. It has been revealed that the modern stage of development of light industry is characterized by the application of fundamentally new technologies based on the creation of a digital twin and digital shadow, which create prerequisites for industrial application of additive technologies in industry. Key words: specialization, cooperation, digitalization, development of light industry


Sign in / Sign up

Export Citation Format

Share Document