Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases

2018 ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Lebedeva ◽  
Wendy Fitzgerald ◽  
Ivan Molodtsov ◽  
Alexander Shpektor ◽  
Elena Vasilieva ◽  
...  

AbstractA proinflammatory dysregulation of cytokine release is associated with various diseases, in particular with those of infectious etiology, as well as with cardiovascular diseases (CVD). We showed earlier that cytokines are released in two forms, soluble and in association with extracellular vesicles (EVs). Here, we investigated the patterns of expression and clustering of soluble and EV-associated cytokines in patients with ST-elevation myocardial infarction (STEMI). We collected plasma samples from 48 volunteers without CVD and 62 patients with STEMI, separated soluble and EV fractions, and analyzed them for 33 cytokines using a multiplexed bead-based assay. We identified soluble and EV-associated cytokines that are upregulated in STEMI and form correlative clusters. Several clustered soluble cytokines were expressed almost exclusively in patients with STEMI. EV-associated cytokines were largely not affected by STEMI, except for pro-inflammatory cytokines IL-6, IL-18, and MIG, as well as anti-inflammatory IL-2 that were upregulated in a correlated fashion. Our results demonstrated that soluble cytokines in patients with STEMI are upregulated in a coordinated fashion in contrast to the mainly unaffected system of EV-associated cytokines. Identification of cytokine clusters affected differently by STEMI now permits investigation of their differential contributions to this pathology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jun Chen ◽  
Jinjie Zhong ◽  
Lin-lin Wang ◽  
Ying-ying Chen

Mitochondrial dysfunction has been proven to play a critical role in the pathogenesis of cardiovascular diseases. The phenomenon of intercellular mitochondrial transfer has been discovered in the cardiovascular system. Studies have shown that cell-to-cell mitochondrial transfer plays an essential role in regulating cardiovascular system development and maintaining normal tissue homeostasis under physiological conditions. In pathological conditions, damaged cells transfer dysfunctional mitochondria toward recipient cells to ask for help and take up exogenous functional mitochondria to alleviate injury. In this review, we summarized the mechanism of mitochondrial transfer in the cardiovascular system and outlined the fate and functional role of donor mitochondria. We also discussed the advantage and challenges of mitochondrial transfer strategies, including cell-based mitochondrial transplantation, extracellular vesicle-based mitochondrial transplantation, and naked mitochondrial transplantation, for the treatment of cardiovascular disorders. We hope this review will provide perspectives on mitochondrial-targeted therapeutics in cardiovascular diseases.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (19) ◽  
pp. 2917-2925 ◽  
Author(s):  
Hong-Lin Cheng ◽  
Chien-Yu Fu ◽  
Wen-Che Kuo ◽  
Yen-Wen Chen ◽  
Yi-Sin Chen ◽  
...  

A novel microfluidic platform for extracellular vesicle extraction, microRNA isolation and detection with field-effect transistors for early detection of cardiovascular diseases.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1355 ◽  
Author(s):  
Yu-Jin Kwon ◽  
Young-Eun Cho ◽  
A-Ra Cho ◽  
Won Jun Choi ◽  
Sijung Yun ◽  
...  

The Mediterranean diet (MD) has been reported to have beneficial effects on breast cancer and cardiovascular diseases. Recently, microRNAs (miRNAs) have been suggested as biomarkers for the diagnosis and disease prognosis in cancer and cardiovascular diseases. We evaluated the influence of the MD on the plasma-derived extracellular vesicle miRNA signature of overweight breast cancer survivors. Sixteen participants instructed to adhere to the MD for eight weeks were included in this study. To curate differentially expressed miRNAs after MD intervention, we employed two methods: significance analysis of microarrays and DESeq2. The selected miRNAs were analyzed using ingenuity pathway analysis. After an eight-week intervention, body mass index, waist circumference, fasting glucose, fasting insulin, and homeostatic model assessment for insulin resistance were significantly improved. Expression levels of 798 miRNAs were comprehensively analyzed, and 42 extracellular vesicle miRNAs were significantly differentially regulated after the eight-week MD (36 were up and 6 were down-regulated). We also identified enriched pathways in genes regulated by differentially expressed 42 miRNAs, which include signaling associated with breast cancer, energy metabolism, glucose metabolism, and insulin. Our study indicates that extracellular vesicle miRNAs differentially expressed as a result of the MD might be involved in the mechanisms that relate to cardiometabolic risk factors in overweight breast cancer survivors.


2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


2018 ◽  
Vol 63 (2) ◽  
pp. 295-312 ◽  
Author(s):  
Anna Banik ◽  
Ralf Schwarzer ◽  
Nina Knoll ◽  
Katarzyna Czekierda ◽  
Aleksandra Luszczynska

Sign in / Sign up

Export Citation Format

Share Document