scholarly journals Sequential Continuous Mixotrophic and Phototrophic Cultivation Might Be a Cost-Effective Strategy for Astaxanthin Production From the Microalga Haematococcus lacustris

Author(s):  
Mahammed Ilyas Khazi ◽  
Liangtao Shi ◽  
Fakhra Liaqat ◽  
Yuxin Yang ◽  
Xin Li ◽  
...  

Although Haematococcus lacustris has been developed for astaxanthin production for decades, the production cost is still high. In order to modify the production processes, we proposed a novel strategy of cultivation, featured by sequential indoor continuous mixotrophic cultivation for the production of green cells followed by outdoor phototrophic induction for astaxanthin accumulation. The continuous mixotrophic cultivation was first optimized indoor, and then the seed culture of mixotrophic cultivation was inoculated into outdoor open raceway ponds for photoinduction. The results showed that mixotrophically grown cultures could efficiently grow without losing their photosynthetic efficiency and yielded higher biomass concentration (0.655 g L−1) and astaxanthin content (2.2% DW), compared to phototrophically grown seed culture controls. This novel strategy might be a promising alternative to the current approaches to advance the production technology of astaxanthin from microalgae.

2020 ◽  
Vol 17 (5) ◽  
pp. 354-364
Author(s):  
Mohammad Mahmoudi Goumari ◽  
Ibrahim Farhani ◽  
Navid Nezafat ◽  
Shirin Mahmoodi

Infectious diseases have caused historical pandemics in the world. Three strategies, including sanitation programs, antimicrobial drugs, and vaccines are considered for the prevention and treatment of infectious diseases. Today, some infectious diseases cause millions of mortalities universally. Due to the emergence of antibiotic-resistant pathogens, as well as some limitations of traditional vaccines, focusing on novel strategies is essential. Multi-Epitope Vaccines (MEVs), as a novel strategy, have been designed based on immunoinformatics methods; epitope prediction by authentic servers, attachment of epitopes using proper linkers, physicochemical, immunological and structural evaluation by bioinformatics tools that are basic stages in MEVs designing. Advantages such as cost-effective, high safety, less time consumption in designing, the application of natural adjuvants, and satisfactory preclinical evaluation outstand MEVs than other types of vaccines. Therefore, MEVs are promising vaccines against resistant diseases such as lower respiratory infection and diarrhea.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


2021 ◽  
Vol 11 (4) ◽  
pp. 1814
Author(s):  
Min Seong Kim ◽  
Sean Seungwon Lee

Drill and blast is the most cost-effective excavation method for underground construction, however, vibration and noise, induced by blasting, have been consistently reported as problems. Cut blasting has been widely employed to reduce the blast-induced problems during underground excavation. We propose that the large hole boring method using the state-of-the-art MSP (Multi-setting smart-investigation of the ground and pre-large hole boring) machine (“MSP method”) can efficiently improve vibration reduction. The MSP machine will be used to create 382 mm diameter empty holes at the tunnel cut area for this purpose. This study assessed the efficiency of the MSP method in reducing blast-induced vibration in five blasting patterns using a cylinder-cut, which is a traditional cut blasting method. The controlled blasting patterns using the MSP method demonstrated up to 72% reduction in blast-induced vibration, compared to the base case, Pattern B, where only cylinder-cut and smooth blasting method were applied. Therefore, the MSP method proves to be a promising alternative for blasting in sensitive urban areas where non-vibration excavation techniques were initially considered. Geological characteristics of 50 m beyond the excavation face can be acquired through the proposed real-time boring data monitoring system together with a borehole alignment tracking and ground exploration system. The obtained geological information will be a great help in preparing alternative designs, and scheduling of construction equipment and labour during the tunnel construction.


2021 ◽  
pp. 1-9
Author(s):  
Karen Patricia Best ◽  
Judith Gomersall ◽  
Maria Makrides

Worldwide, around 15 million preterm babies are born annually, and despite intensive research, the specific mechanisms triggering preterm birth (PTB) remain unclear. Cost-effective primary prevention strategies to reduce PTB are required, and nutritional interventions offer a promising alternative. Nutrients contribute to a variety of mechanisms that are potentially important to preterm delivery, such as infection, inflammation, oxidative stress, and muscle contractility. Several observational studies have explored the association between dietary nutrients and/or dietary patterns and PTB, often with contrasting results. Randomized trial evidence on the effects of supplementation with zinc, multiple micronutrients (iron and folic acid), and vitamin D is promising; however, results are inconsistent, and many studies are not adequately powered for outcomes of PTB. Large-scale clinical trials with PTB as the primary outcome are needed before any firm conclusions can be drawn for these nutrients. The strongest evidence to date for a nutritional solution exists for omega-3 long-chain polyunsaturated fatty acids (LCPUFAs), key nutrients in fish. In 2018, a Cochrane Review (including 70 studies) showed that prenatal supplementation with omega-3 LCPUFAs reduced the risk of PTB and early PTB (EPTB) compared with no omega-3 supplementation. However, the largest trial of omega-3 supplementation in pregnancy, the Omega-3 to Reduce the Incidence of Prematurity (ORIP) trial (<i>n</i> = 5,544), showed no reduction in EPTB and a reduction in PTB only in a prespecified analysis of singleton pregnancies. Exploratory analyses from the ORIP trial found that women with low baseline total omega-3 status were at higher risk of EPTB, and that this risk was substantially reduced with omega-3 supplementation. In contrast, women with replete or high baseline total omega-3 status were already at low risk of EPTB and additional omega-3 supplementation increased the risk of EPTB compared to control. These findings suggest that determining an individual woman’s PUFA status may be the most precise way to inform recommendations to reduce her risk of PTB.


Author(s):  
Hitesh Chawla ◽  
Megat-Usamah Megat-Johari ◽  
Peter T. Savolainen ◽  
Christopher M. Day

The objectives of this study were to assess the in-service safety performance of roadside culverts and evaluate the potential impacts of installing various safety treatments to mitigate the severity of culvert-involved crashes. Such crashes were identified using standard fields on police crash report forms, as well as through a review of pertinent keywords from the narrative section of these forms. These crashes were then linked to the nearest cross-drainage culvert, which was associated with the nearest road segment. A negative binomial regression model was then estimated to discern how the risk of culvert-involved crashes varied as a function of annual average daily traffic, speed limit, number of travel lanes, and culvert size and offset. The second stage of the analysis involved the use of the Roadside Safety Analysis Program to estimate the expected crash costs associated with various design contexts. A series of scenarios were evaluated, culminating in guidance as to the most cost-effective treatments for different combinations of roadway geometric and traffic characteristics. The results of this study provide an empirical model that can be used to predict the risk of culvert-involved crashes under various scenarios. The findings also suggest that the installation of safety grates on culvert openings provides a promising alternative for most of the cases where the culvert is located within the clear zone. In general, a guardrail is recommended when adverse conditions are present or when other treatments are not feasible at a specific location.


2018 ◽  
Vol 62 (1) ◽  
pp. 59-66 ◽  
Author(s):  
I. Širochmanová ◽  
Ľ. Čomor ◽  
E. Káňová ◽  
I. Jiménez-Munguía ◽  
Z. Tkáčová ◽  
...  

Abstract The presence of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier presents animmense challenge for effective delivery of therapeutics to the central nervous system. Many potential drugs, which are effective at their site of action, have failed due to the lack of distribution in sufficient quantity to the central nervous system (CNS). In consequence, many diseases of the central nervous system remain undertreated. Antibodies, IgG for example, are difficult to deliver to the CNS due to their size (~155 kDa), physico-chemical properties and the presence of Fc receptor on the blood-brain barrier. Smaller antibodies, like the recently developed nanobodies, may overcome the obstacle of the BBB and enter into the CNS. The nanobodies are the smallest available antigen-binding fragments harbouring the full antigenbinding capacity of conventional antibodies. They represent a new generation of therapeutics with exceptional properties, such as: recognition of unique epitopes, target specificity, high affinity, high solubility, high stability and high expression yields in cost-effective recombinant production. Their ability to permeate across the BBBmakes thema promising alternative for central nervous system disease therapeutics. In this review, we have systematically presented different aspects of the BBB, drug delivery mechanisms employed to cross the BBB, and finally nanobodies — a potential therapeutic molecule against neuroinfections.


Author(s):  
Alma Schaafstal ◽  
Raegan M. Hoeft ◽  
Martin van Schaik

The process of training teams increasingly occurs in synthetic environments. However, it is often still modeled after live team training, including the disadvantages of live training, for example, the fact that all teammates must be available. This paper explores overcoming the disadvantages of human teammates in training teams in synthetic environments, while keeping the advantages of learning in a collaborative and cooperative fashion. Simulated teammates are a promising alternative because they are always available, may be modeled after experienced training personnel, and may be more cost effective in the long run. This paper details a research approach towards the definition of requirements for simulated teammates. In our approach, we carry out a set of experiments using confederates as simulated teammates, in a well-controlled simulation of a military command-and-control task The results of a first experiment show slightly better teamwork skills for those teams trained with simulated teammates.


Author(s):  
Juan Liu ◽  
Huaiyuan Zheng ◽  
Xinyi Dai ◽  
Patrina S. P. Poh ◽  
Hans-Günther Machens ◽  
...  

Tissue engineering in combination with stem cell technology has the potential to revolutionize human healthcare. It aims at the generation of artificial tissues that can mimic the original with complex functions for medical applications. However, even the best current designs are limited in size, if the transport of nutrients and oxygen to the cells and the removal of cellular metabolites waste is mainly dependent on passive diffusion. Incorporation of functional biomimetic vasculature within tissue engineered constructs can overcome this shortcoming. Here, we developed a novel strategy using 3D printing and injection molding technology to customize multilayer hydrogel constructs with pre-vascularized structures in transparent Polydimethysiloxane (PDMS) bioreactors. These bioreactors can be directly connected to continuous perfusion systems without complicated construct assembling. Mimicking natural layer-structures of vascular walls, multilayer vessel constructs were fabricated with cell-laden fibrin and collagen gels, respectively. The multilayer design allows functional organization of multiple cell types, i.e., mesenchymal stem cells (MSCs) in outer layer, human umbilical vein endothelial cells (HUVECs) the inner layer and smooth muscle cells in between MSCs and HUVECs layers. Multiplex layers with different cell types showed clear boundaries and growth along the hydrogel layers. This work demonstrates a rapid, cost-effective, and practical method to fabricate customized 3D-multilayer vascular models. It allows precise design of parameters like length, thickness, diameter of lumens and the whole vessel constructs resembling the natural tissue in detail without the need of sophisticated skills or equipment. The ready-to-use bioreactor with hydrogel constructs could be used for biomedical applications including pre-vascularization for transplantable engineered tissue or studies of vascular biology.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 874 ◽  
Author(s):  
Janith Weerasinghe ◽  
Wenshao Li ◽  
Rusen Zhou ◽  
Renwu Zhou ◽  
Alexander Gissibl ◽  
...  

Silver nanoparticles have applications in plasmonics, medicine, catalysis and electronics. We report a simple, cost-effective, facile and reproducible technique to synthesise silver nanoparticles via plasma-induced non-equilibrium liquid chemistry with the absence of a chemical reducing agent. Silver nanoparticles with tuneable sizes from 5.4 to 17.8 nm are synthesised and characterised using Transmission Electron Microscopy (TEM) and other analytic techniques. A mechanism for silver nanoparticle formation is also proposed. The antibacterial activity of the silver nanoparticles was investigated with gram-positive and gram-negative bacteria. The inhibition of both bacteria types was observed. This is a promising alternative method for the instant synthesis of silver nanoparticles, instead of the conventional chemical reduction route, for numerous applications.


2019 ◽  
Author(s):  
Martin A. Smith ◽  
Tansel Ersavas ◽  
James M. Ferguson ◽  
Huanle Liu ◽  
Morghan C Lucas ◽  
...  

ABSTRACTNanopore sequencing has enabled sequencing of native RNA molecules without conversion to cDNA, thus opening the gates to a new era for the unbiased study of RNA biology. However, a formal barcoding protocol for direct sequencing of native RNA molecules is currently lacking, limiting the efficient processing of multiple samples in the same flowcell. A major limitation for the development of barcoding protocols for direct RNA sequencing is the error rate introduced during the base-calling process, especially towards the 5’ and 3’ ends of reads, which complicates sequence-based barcode demultiplexing. Here, we propose a novel strategy to barcode and demultiplex direct RNA sequencing nanopore data, which does not rely on base-calling or additional library preparation steps. Specifically, custom DNA oligonucleotides are ligated to RNA transcripts during library preparation. Then, raw current signal corresponding to the DNA barcode is extracted and transformed into an array of pixels, which is used to determine the underlying barcode using a deep convolutional neural network classifier. Our method,DeePlexiCon, implements a 20-layer residual neural network model that can demultiplex 93% of the reads with 95.1% specificity, or 60% of reads with 99.9% specificity. The availability of an efficient and simple barcoding strategy for native RNA sequencing will enhance the use of direct RNA sequencing by making it more cost-effective to the entire community. Moreover, it will facilitate the applicability of direct RNA sequencing to samples where the RNA amounts are limited, such as patient-derived samples.


Sign in / Sign up

Export Citation Format

Share Document