scholarly journals Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens

Author(s):  
Yuru Deng ◽  
Angelina Angelova

Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.

2004 ◽  
Vol 72 (8) ◽  
pp. 4751-4762 ◽  
Author(s):  
Hesham M. Al-Younes ◽  
Volker Brinkmann ◽  
Thomas F. Meyer

ABSTRACT Chlamydiae are obligate intracellular pathogens that replicate within a membrane-bound compartment (the inclusion) and are associated with important human diseases, such as trachoma, pneumonia, and atherosclerosis. We have examined the interaction of the host autophagic pathway with Chlamydia trachomatis serovar L2 by using the specific autophagosomal stain monodansylcadaverine, antibodies to autophagosome-associated markers, and traditionally used autophagic inhibitors, particularly 3-methyladenine and amino acids. Chlamydial inclusions did not sequester monodansylcadaverine, suggesting absence of fusion with autophagosomes. Interestingly, exposure of cultures infected for 19 h to 3-methyladenine or single amino acids until the end of infection (44 h) caused various degrees of abnormalities in the inclusion maturation and in the progeny infectivity. Incubation of host cells with chemicals throughout the entire period of infection modulated the growth of Chlamydia even more dramatically. Remarkably, autophagosomal markers MAP-LC3 and calreticulin were redistributed to the inclusion of Chlamydia, a process that appears to be sensitive to 3-methyladenine and some amino acids. The present data indicate the lack of autophagosomal fusion with the inclusion because it was devoid of monodansylcadaverine and no distinct rim of autophagosomal protein-specific staining around the inclusion could be observed. However, high sensitivity of Chlamydia to conditions that could inhibit host autophagic pathway and the close association of MAP-LC3 and calreticulin with the inclusion membrane still suggest a potential role of host autophagy in the pathogenesis of Chlamydia.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 142
Author(s):  
Xiao Cong Pang ◽  
Han Xu Zhang ◽  
Zhi Zhang ◽  
Suguro Rinkiko ◽  
Yi Min Cui ◽  
...  

December 2019 saw the emergence of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has spread across the globe. The high infectivity and ongoing mortality of SARS-CoV-2 emphasize the demand of drug discovery. Angiotensin-converting enzyme II (ACE2) is the functional receptor for SARS-CoV-2 entry into host cells. ACE2 exists as a membrane-bound protein on major viral target pulmonary epithelial cells, and its peptidase domain (PD) interacts SARS-CoV-2 spike protein with higher affinity. Therefore, targeting ACE2 is an important pharmacological intervention for a SARS-CoV-2 infection. In this review, we described the two-way switch role of ACE2 in the treatment of novel coronavirus pneumonia and underlying comorbidities, and discussed the potential effect of the ACE inhibitor and angiotensin receptor blocker on a hypertension patient with the SARS-CoV-2 infection. In addition, we analyzed the S-protein-binding site on ACE2 and suggested that blocking hot spot-31 and hot spot-353 on ACE2 could be a therapeutic strategy for preventing the spread of SARS-CoV-2. Besides, the recombinant ACE2 protein could be another potential treatment option for SARS-CoV-2 induced acute severe lung failure. This review could provide beneficial information for the development of anti-SARS-CoV-2 agents via targeting ACE2 and the clinical usage of renin-angiotensin system (RAS) drugs for novel coronavirus pneumonia treatment.


2003 ◽  
Vol 71 (3) ◽  
pp. 1481-1490 ◽  
Author(s):  
Françoise Porte ◽  
Aroem Naroeni ◽  
Safia Ouahrani-Bettache ◽  
Jean-Pierre Liautard

ABSTRACT Brucella species are gram-negative, facultative intracellular bacteria that infect humans and animals. These organisms can survive and replicate within a membrane-bound compartment inside professional and nonprofessional phagocytic cells. Inhibition of phagosome-lysosome fusion has been proposed as a mechanism for intracellular survival in both cell types. However, the molecular mechanisms and the microbial factors involved are poorly understood. Smooth lipopolysaccharide (LPS) of Brucella has been reported to be an important virulence factor, although its precise role in pathogenesis is not yet clear. In this study, we show that the LPS O side chain is involved in inhibition of the early fusion between Brucella suis-containing phagosomes and lysosomes in murine macrophages. In contrast, the phagosomes containing rough mutants, which fail to express the O antigen, rapidly fuse with lysosomes. In addition, we show that rough mutants do not enter host cells by using lipid rafts, contrary to smooth strains. Thus, we propose that the LPS O chain might be a major factor that governs the early behavior of bacteria inside macrophages.


2019 ◽  
Author(s):  
Omar Ramírez-Nuñez ◽  
Mariona Jové ◽  
Pascual Torres ◽  
Joaquim Sol ◽  
Laia Fontdevila ◽  
...  

ABSTRACTIn this pilot study, we show that nuclei in spinal cord from ALS patients exhibit a differential lipidomic signature. Among the differential lipid species we could annotate 41 potential identities. These comprise membrane-bound lipids such as phosphatidylethanolamines–including plasmalogens- and phosphatidylcholines but also other lipid classes such as glycosphingolipids, diacylglycerols, and triacylglycerides (potentially present as nuclear lipid droplets). These results were orthogonally validated by showing loss of alkyldihydroxyacetonephosphate synthase (AGPS), a key peroxisomal enzyme in plasmalogen synthesis, both in ALS necropsy samples, in human motor neurons derived from iPSC from ALS patients and in hSOD-G93A transgenic mice. Further, diacylglycerol content changes were associated to ALS-linked variations in related-enzymes, such as phospholipase C ßI (PLCßI), the source of nuclear diacylglycerol, and protein kinase CßII (PKCßII), whose function partially depends on nuclei concentration of diacylglycerol. These results point out for not only a role of nuclear membrane lipids but also to lipids present in the nucleoplasm, suggesting an undisclosed role for this part of the subcellular lipidome in ALS pathophysiology.


2019 ◽  
Vol 3 (1) ◽  
pp. e201900549 ◽  
Author(s):  
Youngae Lee ◽  
Hiroshi Yamada ◽  
Ariel Pradipta ◽  
Ji Su Ma ◽  
Masaaki Okamoto ◽  
...  

Toxoplasma gondii is an obligate intracellular protozoan parasite capable of infecting warm-blooded animals by ingestion. The organism enters host cells and resides in the cytoplasm in a membrane-bound parasitophorous vacuole (PV). Inducing an interferon response enables IFN-γ–inducible immunity-related GTPase (IRG protein) to accumulate on the PV and to restrict parasite growth. However, little is known about the mechanisms by which IRG proteins recognize and destroy T. gondii PV. We characterized the role of IRG protein Irgb6 in the cell-autonomous response against T. gondii, which involves vacuole ubiquitination and breakdown. We show that Irgb6 is capable of binding a specific phospholipid on the PV membrane. Furthermore, the absence of Irgb6 causes reduced targeting of other effector IRG proteins to the PV. This suggests that Irgb6 has a role as a pioneer in the process by which multiple IRG proteins access the PV. Irgb6-deficient mice are highly susceptible to infection by a strain of T. gondii avirulent in wild-type mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying He ◽  
Katherine Phan ◽  
Surabhi Bhatia ◽  
Russell Pickford ◽  
YuHong Fu ◽  
...  

AbstractRare, yet biologically critical, lipids that contain very long chain fatty acids (VLCFA-lipids) are synthesized in the brain by the enzyme ELOVL4. High levels of VLCFA-lipids are toxic to cells and excess VLCFA-lipids are actively removed by ABCD1 in an ATP-dependent manner. Virtually nothing is known about the impact of VLCFA-lipids in neurodegenerative diseases. Here, we investigated the possible role of VLCFA-lipids in frontotemporal dementia (FTD), which is a leading cause of younger-onset dementia. Using quantitative discovery lipidomics, we identified three VLCFA-lipid species that were significantly increased in FTD brain compared to controls, with strong correlations with ELOVL4. Increases in ELOVL4 expression correlated with significant decreases in the membrane-bound synaptophysin in FTD brain. Furthermore, increases in ABCD1 expression correlated with increases in VLCFA-lipids. We uncovered a new pathomechanism that is pertinent to understanding the pathogenesis of FTD.


Author(s):  
Tania Ho-Plágaro ◽  
Raúl Huertas ◽  
María I Tamayo-Navarrete ◽  
Elison Blancaflor ◽  
Nuria Gavara ◽  
...  

Abstract The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming in order to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb gene, belonging to a Solanaceae group of genes encoding MT-associated proteins for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb OE roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells overexpressing tsb revealed that TSB is involved in MT-bundling. Taken together, our results provide unprecedented insights into the role of novel MT-associated protein in MT rearrangements throughout the different stages of the arbuscule life cycle.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document