scholarly journals Prenatal Development and Function of Human Mononuclear Phagocytes

Author(s):  
Mohi Miah ◽  
Issac Goh ◽  
Muzlifah Haniffa

The human mononuclear phagocyte (MP) system, which includes dendritic cells, monocytes, and macrophages, is a critical regulator of innate and adaptive immune responses. During embryonic development, MPs derive sequentially in yolk sac progenitors, fetal liver, and bone marrow haematopoietic stem cells. MPs maintain tissue homeostasis and confer protective immunity in post-natal life. Recent evidence – primarily in animal models – highlight their critical role in coordinating the remodeling, maturation, and repair of target organs during embryonic and fetal development. However, the molecular regulation governing chemotaxis, homeostasis, and functional diversification of resident MP cells in their respective organ systems during development remains elusive. In this review, we summarize the current understanding of the development and functional contribution of tissue MPs during human organ development and morphogenesis and its relevance to regenerative medicine. We outline how single-cell multi-omic approaches and next-generation ex-vivo organ-on-chip models provide new experimental platforms to study the role of human MPs during development and disease.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 444-444
Author(s):  
Archibald S. Perkins ◽  
Sharon Lin ◽  
Jacob delCampo ◽  
Fernando Camargo ◽  
Kimberly Lezon-Geyda

Abstract The MDS1-EVI1 locus is of considerable interest due to its role in myeloid malignancies and dysplasias. It is well established now that the locus has two different transcription start sites (TSS) located 0.5 Mb apart, and these have the capacity to encode different isoforms, which variably contain zinc finger DNA binding domains and a SET-like domain that may have histone modifying ability. In order to better understand the biological role of this locus, we knocked in a lacZ allele into the Mds1 (upstream) TSS by homologous recombination in ES cells and created mice harboring this modified allele (K. Lezon-Geyda, S. Lin, G. Steele-Perkins et al, in preparation). By staining for beta-galactosidase activity, we documented the distribution of Mds1 activity during embryonic development and in the adult. During development, five major organ systems showed expression: musculoskeletal, renal, cardiac, neural, and hematopoietic, and in the latter three, there was a striking and highly specific spatiotemporal pattern of expression suggesting that Mds1-Evi1 plays important regulatory roles. In the developing heart, staining was seen in the anterior heart field specifically during the formation of the cardiac outflow tract, with significant spatiotemporal overlap with Mef2c, which encodes an important cardiac transcriptional regulatory protein. Thereafter, expression in the heart is very low. Beta-gal staining in the hematopoietic system in the embryo is limited to the clusters of nascent hematopoietic progenitors that develop at day 9.5 p.c. in the ventrolateral wall of the dorsal aorta and bud into the vascular lumen. Strikingly, we see no staining in other endothelium, nor in the fetal liver of 12.5–14.5 day embryos, wherein the majority of fetal hematopoiesis takes place. In adult bone marrow, there is beta-gal activity exclusively in the lin− c-kit+ Sca1+ progenitor population, with all of the beta-gal-positive cells being in the progenitor pool, and nearly all of the progenitor cells staining. While homozygous mice are viable, they are small, kyphotic, and have a shortened lifespan. Morphologic and quantitative analysis of the peripheral blood failed to reveal any significant abnormality. To assess the function of the hematopoietic system more rigorously, competitive repopulations of homozygous Mds1-deficient marrow progenitors with wildtype progenitors were performed. Within several weeks after transplant, the Mds1−/− cells were undetectable in the recipients, revealing that the homozygous Mds1-null bone marrow progenitors are deficient in their repopulating ability. To identify what function Mds1-Evi1 plays in hematopoetic cells, we used shRNA to suppress its expression in the myeloid cell lines 32Dcl3 and DA-1. This revealed an increase in steady state levels of cell death, as documented by histone release, TUNEL staining, and caspase activation. These data suggest that a primary role for the Mds1-Evi1 locus in hematopoietic cells is to promote their survival, thus allowing normal expansion at the progenitor stage.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Muti ur Rehman Khan ◽  
Ijaz Ali ◽  
Wei Jiao ◽  
Yun Wang ◽  
Saima Masood ◽  
...  

Kiaa1867 (human Kirre, hKirre) has a critical role in brain development and/or maintenance of the glomerular slit diaphragm in kidneys. Murine homolog of this gene, mKirre expressed in OP9 and AFT024 cells could support hematopoietic stem cells/hematopoietic progenitor cells (HSC/HPC) expansion in vitro. HKirre is also expressed in human FBMOB-hTERT cell line and fetal liver fibroblast-like cells but its function has remained unclear. In this paper, we cloned a hKirre gene from human fetal liver fibroblast-like cells and established a stably overexpressing hKirre-AFT024 cell line. Resultant cells could promote self-renewal and ex vivo expansion of HSCs/HPCs significantly higher than AFT024-control cells transformed with mock plasmid. The Expanded human umbilical cord blood (hUCB) CD34+cells retained the capacity of multipotent differentiation as long as 8 weeks and successfully repopulated the bone marrow of sublethally irradiated NOD/SCID mice, which demonstrated the expansion of long-term primitive transplantable HSCs/HPCs. Importantly, hkirre could upregulate the expressions of Wnt-5A, BMP4, and SDF-1 and downregulate TGF-βwith other hematopoietic growth factors. By SDS-PAGE and Western Blot analysis, a ~89 kDa protein in total lysate of AFT024-hKirre was identified. Supernatants from AFT024-hkirre could also support CD34+CD38−cells expansion. These results demonstrated that the AFT024-hKirre cells have the ability to efficiently expand HSCs/HPCs.


2017 ◽  
Vol 216 (7) ◽  
pp. 2217-2230 ◽  
Author(s):  
Gregoire Stik ◽  
Simon Crequit ◽  
Laurence Petit ◽  
Jennifer Durant ◽  
Pierre Charbord ◽  
...  

Extracellular vesicles (EVs) have been recently reported as crucial mediators in cell-to-cell communication in development and disease. In this study, we investigate whether mesenchymal stromal cells that constitute a supportive microenvironment for hematopoietic stem and progenitor cells (HSPCs) released EVs that could affect the gene expression and function of HSPCs. By taking advantage of two fetal liver–derived stromal lines with widely differing abilities to maintain HSPCs ex vivo, we demonstrate that stromal EVs play a critical role in the regulation of HSPCs. Both supportive and nonsupportive stromal lines secreted EVs, but only those delivered by the supportive line were taken up by HSPCs ex vivo and in vivo. These EVs harbored a specific molecular signature, modulated the gene expression in HSPCs after uptake, and maintained the survival and clonogenic potential of HSPCs, presumably by preventing apoptosis. In conclusion, our study reveals that EVs are an important component of the HSPC niche, which may have major applications in regenerative medicine.


2016 ◽  
Vol 113 (23) ◽  
pp. E3240-E3249 ◽  
Author(s):  
Derek W. Gilroy ◽  
Matthew L. Edin ◽  
Roel P. H. De Maeyer ◽  
Jonas Bystrom ◽  
Justine Newson ◽  
...  

Resolution of inflammation has emerged as an active process in immunobiology, with cells of the mononuclear phagocyte system being critical in mediating efferocytosis and wound debridement and bridging the gap between innate and adaptive immunity. Here we investigated the roles of cytochrome P450 (CYP)-derived epoxy-oxylipins in a well-characterized model of sterile resolving peritonitis in the mouse. Epoxy-oxylipins were produced in a biphasic manner during the peaks of acute (4 h) and resolution phases (24–48 h) of the response. The epoxygenase inhibitor SKF525A (epoxI) given at 24 h selectively inhibited arachidonic acid- and linoleic acid-derived CYP450-epoxy-oxlipins and resulted in a dramatic influx in monocytes. The epoxI-recruited monocytes were strongly GR1+, Ly6chi, CCR2hi, CCL2hi, and CX3CR1lo. In addition, expression of F4/80 and the recruitment of T cells, B cells, and dendritic cells were suppressed. sEH (Ephx2)−/− mice, which have elevated epoxy-oxylipins, demonstrated opposing effects to epoxI-treated mice: reduced Ly6chi monocytes and elevated F4/80hi macrophages and B, T, and dendritic cells. Ly6chi and Ly6clo monocytes, resident macrophages, and recruited dendritic cells all showed a dramatic change in their resolution signature following in vivo epoxI treatment. Markers of macrophage differentiation CD11b, MerTK, and CD103 were reduced, and monocyte-derived macrophages and resident macrophages ex vivo showed greatly impaired phagocytosis of zymosan and efferocytosis of apoptotic thymocytes following epoxI treatment. These findings demonstrate that epoxy-oxylipins have a critical role in monocyte lineage recruitment and activity to promote inflammatory resolution and represent a previously unidentified internal regulatory system governing the establishment of adaptive immunity.


2018 ◽  
Vol 206 (1-2) ◽  
pp. 54-61
Author(s):  
Palaniappan Sethu ◽  
Thomas A. Haglund ◽  
Aaron J. Rogers ◽  
Herbert Chen ◽  
John Porterfield ◽  
...  

We developed a novel model for studying hyperparathyroidism by growing ex vivo 3-dimensional human parathyroids as part of a microphysiological system (MPS) that mimics human physiology. The purpose of this study was to validate the parathyroid portion of the MPS. We prospectively collected parathyroid tissue from 46 patients with hyperparathyroidism for growth into pseudoglands. We evaluated pseudogland architecture and calcium responsiveness. Following 2 weeks in culture, dispersed cells successfully coalesced into pseudoglands ∼500–700 µm in diameter that mimicked the appearance of normal parathyroid glands. Functionally, they also appeared similar to intact parathyroids in terms of organization and calcium-sensing receptor expression. Immunohistochemical staining for calcium-sensing receptor revealed 240–450/cell units of mean fluorescence intensity within the pseudoglands. Finally, the pseudoglands showed varying levels of calcium responsiveness, indicated by changes in parathyroid hormone (PTH) levels. In summary, we successfully piloted the development of a novel MPS for studying the effects of hyperparathyroidism on human organ systems. We are currently evaluating the effect of PTH on adverse remodeling of tissue engineered cardiac, skeletal, and bone tissue within the MPS.


Author(s):  
Theo W Combes ◽  
Federica Orsenigo ◽  
Alexander Stewart ◽  
A S Jeewaka R Mendis ◽  
Deborah Dunn-Walters ◽  
...  

Abstract Mononuclear Phagocytes defend tissues, present antigens and mediate recovery and healing. To date we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess Mononuclear Phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.


2021 ◽  
Author(s):  
Jing Ma ◽  
Nadim Mahmud ◽  
Maarten C. Bosland ◽  
Susan R Ross

DDX41 is a tumor suppressor frequently mutated in human myeloid neoplasms. DDX41 binds to DNA/RNA hybrids and interacts with spliceosome components. How it affects hematopoiesis is still unclear. Using a knockout mouse model, we demonstrate that DDX41 is required for mouse hematopoietic stem and progenitor cell (HSPC) survival and differentiation. Lack of DDX41 particularly affected myeloid progenitor development, starting at embryonic day 13.5. Transplantation of DDX41-deficient fetal liver and adult bone marrow (BM) cells were unable to rescue mice from lethal irradiation after transplantation. DDX41 knockout stem cells were also defective in ex vivo colony forming assays. RNASeq analysis of lineage-negative, cKit+Sca1+ cells isolated from fetal liver demonstrated that the expression of many genes associated with hematopoietic differentiation were altered in DDX41 knockout cells. Furthermore, altered splicing of genes involved in key biological processes were observed in cells lacking DDX41. Our data reveal a critical role for DDX41 in HSPC differentiation and myeloid progenitor development, likely through its regulation of gene expression programs and splicing.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingxiao Song ◽  
Xiaoning Wang ◽  
Xiwei Wu ◽  
Tae Hyuk Kang ◽  
Hanjun Qin ◽  
...  

AbstractEfforts to improve the prognosis of steroid-resistant gut acute graft-versus-host-disease (SR-Gut-aGVHD) have suffered from poor understanding of its pathogenesis. Here we show that the pathogenesis of SR-Gut-aGVHD is associated with reduction of IFN-γ+ Th/Tc1 cells and preferential expansion of IL-17−IL-22+ Th/Tc22 cells. The IL-22 from Th/Tc22 cells causes dysbiosis in a Reg3γ-dependent manner. Transplantation of IFN-γ-deficient donor CD8+ T cells in the absence of CD4+ T cells produces a phenocopy of SR-Gut-aGVHD. IFN-γ deficiency in donor CD8+ T cells also leads to a PD-1-dependent depletion of intestinal protective CX3CR1hi mononuclear phagocytes (MNP), which also augments expansion of Tc22 cells. Supporting the dual regulation, simultaneous dysbiosis induction and depletion of CX3CR1hi MNP results in full-blown Gut-aGVHD. Our results thus provide insights into SR-Gut-aGVHD pathogenesis and suggest the potential efficacy of IL-22 antagonists and IFN-γ agonists in SR-Gut-aGVHD therapy.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3065-3075 ◽  
Author(s):  
Olena Klimchenko ◽  
Antonio Di Stefano ◽  
Birgit Geoerger ◽  
Sofiane Hamidi ◽  
Paule Opolon ◽  
...  

Abstract The early emergence of macrophages and their large pattern of tissue distribution during development suggest that they may play a critical role in the initial steps of embryogenesis. In the present study, we show that monocytic cells derived from human embryonic stem cells (hESCs) and from fetal liver follow a differentiation pathway different to that of adult cells, leading to specific functions. Embryonic and fetal monocytic cells differentiated from a CD14lowCD16− precursor to form CD14highCD16+ cells without producing the CD14highCD16− cell population that predominates in adult peripheral blood. Both demonstrated an enhanced expression of genes encoding tissue-degrading enzymes, chemokines, and scavenger receptors, as was previously reported for M2 macrophages. Compared with adult blood monocytes, embryonic and fetal monocytic cells secreted high amounts of proteins acting on tissue remodeling and angiogenesis, and most of them expressed the Tie2 receptor. Furthermore, they promoted vascular remodeling in xenotransplanted human tumors. These findings suggest that the regulation of human fetal and embryonic monocytic cell differentiation leads to the generation of cells endowed mainly with anti-inflammatory and remodeling functions. Trophic and immunosuppressive functions of M2-polarized macrophages link fetus and tumor development, and hESCs offer a valuable experimental model for in vitro studies of mechanisms sustaining these processes.


Sign in / Sign up

Export Citation Format

Share Document