scholarly journals Post-translational Modifications of the Protein Termini

Author(s):  
Li Chen ◽  
Anna Kashina

Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.

Author(s):  
Michael Duszenko ◽  
Lars Redecke ◽  
Celestin Nzanzu Mudogo ◽  
Benjamin Philip Sommer ◽  
Stefan Mogk ◽  
...  

During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained byin vivocrystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by whichin vivocrystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.


2019 ◽  
Vol 20 (6) ◽  
pp. 625-634 ◽  
Author(s):  
Xun Che ◽  
Wei Dai

AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.


2020 ◽  
Vol 295 (13) ◽  
pp. 4252-4264 ◽  
Author(s):  
Chu Wang ◽  
Kaikai Zhang ◽  
Lina Meng ◽  
Xin Zhang ◽  
Yanan Song ◽  
...  

SAM and HD domain-containing protein 1 (SAMHD1) is a host factor that restricts reverse transcription of lentiviruses such as HIV in myeloid cells and resting T cells through its dNTP triphosphohydrolase (dNTPase) activity. Lentiviruses counteract this restriction by expressing the accessory protein Vpx or Vpr, which targets SAMHD1 for proteasomal degradation. SAMHD1 is conserved among mammals, and the feline and bovine SAMHD1 proteins (fSAM and bSAM) restrict lentiviruses by reducing cellular dNTP concentrations. However, the functional regions of fSAM and bSAM that are required for their biological functions are not well-characterized. Here, to establish alternative models to investigate SAMHD1 in vivo, we studied the restriction profile of fSAM and bSAM against different primate lentiviruses. We found that both fSAM and bSAM strongly restrict primate lentiviruses and that Vpx induces the proteasomal degradation of both fSAM and bSAM. Further investigation identified one and five amino acid sites in the C-terminal domain (CTD) of fSAM and bSAM, respectively, that are required for Vpx-mediated degradation. We also found that the CTD of bSAM is directly involved in mediating bSAM's antiviral activity by regulating dNTPase activity, whereas the CTD of fSAM is not. Our results suggest that the CTDs of fSAM and bSAM have important roles in their antiviral functions. These findings advance our understanding of the mechanism of fSAM- and bSAM-mediated viral restriction and might inform strategies for improving HIV animal models.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 741-741
Author(s):  
David Lombard

Abstract Sirtuins are NAD+-dependent deacylases that regulate diverse cellular processes such as metabolic homeostasis and genomic integrity. Mammals possess seven sirtuin family members, SIRT1-SIRT7, that display diverse subcellular localization patterns, catalytic activities, protein targets, and biological functions. Three sirtuins, SIRT3, SIRT4, and SIRT5, are primarily located in the mitochondrial matrix. SIRT5 is a very inefficient deacetylase, instead removing negatively charged post-translational modifications (succinyl, glutaryl, and malonyl groups) from lysines of its target proteins, in mitochondria and throughout the cell. SIRT5 plays only modest known roles in normal physiology, with its major functions occurring in the heart under stress conditions. In contrast, in specific cancer types, including melanoma, we have identified a major pro-survival role for SIRT5. We have traced this function of SIRT5 to novel roles for this protein in regulating chromatin biology. New insights into mechanisms of SIRT5 action in cancer, and in normal myocardium, will be discussed.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1033
Author(s):  
Ji Hwan Lee ◽  
Sullim Lee ◽  
Quynh Nhu Nguyen ◽  
Hung Manh Phung ◽  
Myoung-Sook Shin ◽  
...  

Estrogen replacement therapy is a treatment to relieve the symptoms of menopause. Many studies suggest that natural bioactive ingredients from plants resemble estrogen in structure and biological functions and can relieve symptoms of menopause. The fruit of V. rotundifolia, called “Man HyungJa” in Korean, is a traditional medicine used to treat headache, migraine, eye pain, neuralgia, and premenstrual syndrome in Korea and China. The aim of the present study was to confirm that V. rotundifolia fruit extract (VFE) exerts biological functions similar to those of estrogen in menopausal syndrome. We investigated its in vitro effects on MCF-7 cells and in vivo estrogen-like effects on weight gain and uterine contraction in ovariectomized rats. Using the polar extract, the active constituents of VFE (artemetin, vitexicarpin, hesperidin, luteolin, vitexin, and vanillic acid) with estrogen-like activity were identified in MCF-7 cells. In animal experiments, the efficacy of VFE in ameliorating body weight gain was similar to that of estrogen, as evidenced from improvements in uterine atrophy. Vitexin and vitexicarpin are suggested as the active constituents of V. rotundifolia fruits.


2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii233-ii233
Author(s):  
April Bell ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
Lakshmi Bollu ◽  
...  

Abstract Glioblastoma (GBM) is the most common and aggressive primary central nervous system tumor in adults with a median survival of 14.6 months. GBM is a potently immunosuppressive cancer due in-part to the prolific expression of immunosuppressive indoleamine 2,3 dioxygenase 1 (IDO). Tumor cell IDO facilitates the intratumoral accumulation of regulatory T cells (Tregs; CD4+CD25+FoxP3+). Although immunosuppressive IDO activity is canonically characterized by the conversion of tryptophan into kynurenine, we have utilized transgenic and syngeneic mouse models and mutant glioma lines to demonstrate that tumor cell IDO increases Treg accumulation independent of tryptophan metabolism. Here, we address the gap in our understanding of IDO signaling activity in vivo. Subcutaneously-engrafted human GBM expressing human IDO-GFP cDNA was isolated from immunodeficient humanized NSG-SGM3 mice. The tumor was immunoprecipitated for the GFP tag using GFP-TRAP followed by mass spectrometry which revealed a novel methylation site on a lysine residue at amino acid 373 in the IDO C-terminus region. Western blot analysis of IDO protein also revealed the presence of tyrosine phosphorylation. Additionally, we recently created a new transgenic IDO reporter mouse model whereby endogenous IDO is fused to GFP via a T2A linker (IDO→GFP). This model allows for the isolation of IDO+ cells in real-time and without causing cell death, thereby creating the opportunity for downstream molecular analysis of in situ-isolated GFP+ cells. Collectively, our work suggests that IDO non-enzyme activity may involve the post-translational modifications we recently identified. As IDO activity may differ between in vitro and in vivo modeling systems, we will use the new IDO→GFP reporter mouse model for an improved mechanistic understanding of how immunosuppressive IDO facilitates Treg accumulation in vivo.


2021 ◽  
pp. 109451
Author(s):  
Jie Li ◽  
Zhe Su ◽  
Changmin Yu ◽  
Yan Yuan ◽  
Qiong Wu ◽  
...  

2005 ◽  
Vol 280 (16) ◽  
pp. 16019-16029 ◽  
Author(s):  
Archana Jalota ◽  
Kamini Singh ◽  
Lakshminarasimhan Pavithra ◽  
Ruchika Kaul-Ghanekar ◽  
Shahid Jameel ◽  
...  

Various stresses and DNA-damaging agents trigger transcriptional activity of p53 by post-translational modifications, making it a global regulatory switch that controls cell proliferation and apoptosis. Earlier we have shown that the novel MAR-associated protein SMAR1 interacts with p53. Here we delineate the minimal domain of SMAR1 (the arginine-serine-rich domain) that is phosphorylated by protein kinase C family proteins and is responsible for p53 interaction, activation, and stabilization within the nucleus. SMAR1-mediated stabilization of p53 is brought about by inhibiting Mdm2-mediated degradation of p53. We also demonstrate that this arginine-serine (RS)-rich domain triggers the various cell cycle modulating proteins that decide cell fate. Furthermore, phenotypic knock-down experiments using small interfering RNA showed that SMAR1 is required for activation and nuclear retention of p53. The level of phosphorylated p53 was significantly increased in the thymus of SMAR1 transgenic mice, showingin vivosignificance of SMAR1 expression. This is the first report that demonstrates the mechanism of action of the MAR-binding protein SMAR1 in modulating the activity of p53, often referred to as the “guardian of the genome.”


Sign in / Sign up

Export Citation Format

Share Document