scholarly journals A Comparative Environmental Life Cycle Assessment of the Combustion of Ammonia/Methane Fuels in a Tangential Swirl Burner

2021 ◽  
Vol 3 ◽  
Author(s):  
Luis F. Razon ◽  
Agustin Valera-Medina

Ammonia has been proposed as a replacement for fossil fuels. Like hydrogen, emissions from the combustion of ammonia are carbon-free. Unlike hydrogen, ammonia is more energy dense, less explosive, and there exists extensive experience in its distribution. However, ammonia has a low flame speed and combustion emits nitrogen oxides. Ammonia is produced via the Haber-Bosch process which consumes large amounts of fossil fuels and requires high temperatures and pressures. A life cycle assessment to determine potential environmental advantages and disadvantages of using ammonia is necessary. In this work, emissions data from experiments with generating heat from tangential swirl burners using ammonia cofired with methane employing currently available technologies were utilized to estimate the environmental impacts that may be expected. Seven ammonia sources were combined with two methane sources to create 14 scenarios. The impacts from these 14 scenarios were compared to those expected from using pure methane. The results show that using ammonia from present-day commercial production methods will result in worse global warming potentials than using methane to generate the same amount of heat. Only two scenarios, methane from biogas combined with ammonia from hydrogen from electricity and nuclear power via electrolysis and subsequent ammonia synthesis using nitrogen from the air, showed reductions in global warming potential. Subsequent analysis of other environmental impacts for these two scenarios showed potentially lower impacts for respiratory organics, terrestrial acidification-nutrification and aquatic acidification depending on how the burner is operated. The other eight environmental impacts were worse than the methane scenario because of activities intrinsic to the generation of electricity via wind power and nuclear fission. The results show that generating heat from a tangential swirl burner using ammonia currently available technologies will not necessarily result in improved environmental benefits in all categories. Improvements in renewable energy technologies could change these results positively. Other means of producing ammonia and improved means of converting ammonia to energy must continue to be explored.

2021 ◽  
Vol 13 (5) ◽  
pp. 2525
Author(s):  
Camila López-Eccher ◽  
Elizabeth Garrido-Ramírez ◽  
Iván Franchi-Arzola ◽  
Edmundo Muñoz

The aim of this study is to assess the environmental impacts of household life cycles in Santiago, Chile, by household income level. The assessment considered scenarios associated with environmental policies. The life cycle assessment was cradle-to-grave, and the functional unit considered all the materials and energy required to meet an inhabitant’s needs for one year (1 inh/year). Using SimaPro 9.1 software, the Recipe Midpoint (H) methodology was used. The impact categories selected were global warming, fine particulate matter formation, terrestrial acidification, freshwater eutrophication, freshwater ecotoxicity, mineral resource scarcity, and fossil resource scarcity. The inventory was carried out through the application of 300 household surveys and secondary information. The main environmental sources of households were determined to be food consumption, transport, and electricity. Food consumption is the main source, responsible for 33% of the environmental impacts on global warming, 69% on terrestrial acidification, and 29% on freshwater eutrophication. The second most crucial environmental hotspot is private transport, whose contribution to environmental impact increases as household income rises, while public transport impact increases in the opposite direction. In this sense, both positive and negative environmental effects can be generated by policies. Therefore, life-cycle environmental impacts, the synergy between policies, and households’ socio-economic characteristics must be considered in public policy planning and consumer decisions.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 80 ◽  
Author(s):  
Ricardo Ramírez-Villegas ◽  
Ola Eriksson ◽  
Thomas Olofsson

The aim of this study is to assess how the use of fossil and nuclear power in different renovation scenarios affects the environmental impacts of a multi-family dwelling in Sweden, and how changes in the electricity production with different energy carriers affect the environmental impact. In line with the Paris Agreement, the European Union has set an agenda to reduce greenhouse gas emissions by means of energy efficiency in buildings. It is estimated that by the year 2050, 80% of Europe’s population will be living in buildings that already exist. This means it is important for the European Union to renovate buildings to improve energy efficiency. In this study, eight renovation scenarios, using six different Northern European electricity mixes, were analyzed using the standard of the European Committee for Standardization for life cycle assessment of buildings. This study covers all life cycle steps from cradle to grave. The renovation scenarios include combinations of photovoltaics, geothermal heat pumps, heat recovery ventilation, and improvement of the building envelope. The results show that while in some electricity mixes a reduction in the global warming potential can be achieved, it can be at the expense of an increase in radioactive waste production, and, in mixes with a high share of fossil fuels, the global warming potential of the scenarios increases with time, compared with that of the original building. It also shows that in most electricity mixes, scenarios that reduce the active heat demand of the building end up in reducing both the global warming potential and radioactive waste, making them less sensitive to changes in the energy system.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Mattias Gaglio ◽  
Elena Tamburini ◽  
Francesco Lucchesi ◽  
Vassilis Aschonitis ◽  
Anna Atti ◽  
...  

The need to reduce the environmental impacts of the food industry is increasing together with the dramatic increment of global food demand. Circulation strategies such as the exploitation of self-produced renewable energy sources can improve ecological performances of industrial processes. However, evidence is needed to demonstrate and characterize such environmental benefits. This study assessed the environmental performances of industrial processing of maize edible oil, whose energy provision is guaranteed by residues biomasses. A gate-to-gate Life Cycle Assessment (LCA) approach was applied for a large-size factory of Northern Italy to describe: (i) the environmental impacts related to industrial processing and (ii) the contribution of residue-based bioenergy to their mitigation, through the comparison with a reference system based on conventional energy. The results showed that oil refinement is the most impacting phase for almost all the considered impact categories. The use of residue-based bioenergy was found to drastically reduce the emissions for all the impact categories. Moreover, Cumulative Energy Demand analysis revealed that the use of biomass residues increased energy efficiency through a reduction of the total energy demand of the industrial process. The study demonstrates that the exploitation of residue-based bioenergy can be a sustainable solution to improve environmental performances of the food industry, while supporting circular economy.


2018 ◽  
Vol 77 (9) ◽  
pp. 2292-2300 ◽  
Author(s):  
Karina Cubas do Amaral ◽  
Miguel Mansur Aisse ◽  
Gustavo Rafael Collere Possetti ◽  
Marcelo Real Prado

Abstract Upflow anaerobic sludge blanket (UASB) reactors used in sewage treatment generate two by-products that can be reused: sludge and biogas. At the present time in Brazil, most of this resulting sludge is disposed of in sanitary landfills, while biogas is commonly burned off in low-efficiency flares. The aim of the present study was to use life cycle assessment to evaluate the environmental impacts from four different treatment and final destination scenarios for the main by-products of wastewater treatment plants. The baseline scenario, in which the sludge was sanitized using prolonged alkaline stabilization and, subsequently, directed toward agricultural applications and the biogas destroyed in open burners, had the most impact in the categories of global warming, terrestrial ecotoxicity, and human non-carcinogenic toxicity. The scenario in which heat resulting from biogas combustion is used to dry the sludge showed significant improvements over the baseline scenario in all the evaluated impact categories. The recovery of heat from biogas combustion decreased significantly the environmental impact associated with global warming. The combustion of dried sludge is another alternative to improve the sludge management. Despite the reduction of sludge volume to ash, there are environmental impacts inherent to ozone formation and terrestrial acidification.


2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


Buildings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Amir Oladazimi ◽  
Saeed Mansour ◽  
Seyed Abbas Hosseinijou

Given the fact that during the recent years the majority of buildings in Iran have been constructed either on steel or concrete frames, it is essential to investigate the environmental impacts of materials used in such constructions. For this purpose, two multi-story residential buildings in Tehran with a similar function have been considered in this study. One building was constructed with a steel frame and the other was constructed with a concrete frame. Using the life cycle assessment tool, a complete analysis of all the stages of a building’s life cycle from raw material acquisition to demolition and recycling of wastes was carried out. In this research, the environmental impacts included global warming potential in 100 years, acidification, eutrophication potential, human toxicity (cancer and non-cancer effects), resource depletion (water and mineral), climate change, fossil fuel consumption, air acidification and biotoxicity. It could be concluded from the results that the total pollution of the concrete frame in all eleven aforementioned impact factors was almost 219,000 tonnes higher than that of the steel frame. Moreover, based on the results, the concrete frame had poorer performance in all but one impact factor. With respect to global warming potential, the findings indicated there were two types of organic and non-organic gases that had an impact on global warming. Among non-organic emissions, CO2 had the biggest contribution to global warming potential, while among organic emissions, methane was the top contributor. These findings suggest the use of steel frames in the building industry in Iran to prevent further environmental damage; however, in the future, more research studies in this area are needed to completely investigate all aspects of decision on the choice of building frames, including economic and social aspects.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2166 ◽  
Author(s):  
Sara Rajabi Hamedani ◽  
Tom Kuppens ◽  
Robert Malina ◽  
Enrico Bocci ◽  
Andrea Colantoni ◽  
...  

It is unclear whether the production of biochar is economically feasible. As a consequence, firms do not often invest in biochar production plants. However, biochar production and application might be desirable from a societal perspective as it might entail net environmental benefits. Hence, the aim of this work has been to assess and monetize the environmental impacts of biochar production systems so that the environmental aspects can be integrated with the economic and social ones later on to quantify the total return for society. Therefore, a life cycle analysis (LCA) has been performed for two potential biochar production systems in Belgium based on two different feedstocks: (i) willow and (ii) pig manure. First, the environmental impacts of the two biochar production systems are assessed from a life cycle perspective, assuming one ton of biochar as the functional unit. Therefore, LCA using SimaPro software has been performed both on the midpoint and endpoint level. Biochar production from willow achieves better results compared to biochar from pig manure for all environmental impact categories considered. In a second step, monetary valuation has been applied to the LCA results in order to weigh environmental benefits against environmental costs using the Ecotax, Ecovalue, and Stepwise approach. Consequently, sensitivity analysis investigates the impact of variation in NPK savings and byproducts of the biochar production process on monetized life cycle assessment results. As a result, it is suggested that biochar production from willow is preferred to biochar production from pig manure from an environmental point of view. In future research, those monetized environmental impacts will be integrated within existing techno-economic models that calculate the financial viability from an investor’s point of view, so that the total return for society can be quantified and the preferred biochar production system from a societal point of view can be identified.


2014 ◽  
Vol 599 ◽  
pp. 324-327 ◽  
Author(s):  
Jia Ping Cui ◽  
Yu Liu ◽  
Zhi Hong Wang ◽  
Li Li Zhao ◽  
Fei Fei Shi ◽  
...  

The environmental impacts of cement production using two pre-drying processes, i.e., coal-fired pre-drying process and pre-drying process by waste heat from kiln tail process were analyzed and compared through life cycle assessment (LCA). The results show that the energy consumption, GWP, AP, POCP, HT and EP of pre-drying process by waste heat from kiln tail are about 1%, 2%, 5.2%, 5% ,3.5% and 3.8% lower than coal-fired process; therefore the application of pre-drying process by waste heat from kiln tail has obvious environmental benefits.


Eksergi ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 7 ◽  
Author(s):  
Rifkah Akmalina

A life cycle assessment (LCA) has been performed on sorbitol production from glucose, which aims to quantify and evaluate the environmental impacts that produced from the process. SuperPro Designer software was employed to perform the process simulation, while SimaPro was used to quantify the LCA.Potency of global warming, acidification, eutrophication, photochemical oxidants creation, abiotic depletion, and ozone layer depletion were evaluated. A gate-to-gate LCA study of sorbitol production showed that global warming potential (GWP) had the largest impact to environment with the value of 3.551 kg CO2 eq/kg sorbitol. Glucose and electricity consumption were known as two major contributors to GWP, and hydrogen reactor was the main consumer of electricity. The use of glucose were responsible for more than 50% of total environmentalimpact in each category. Performing heat integration in sorbitol processing is highly recommended for gate-togate system to reduce energy demand, thus decreasing the environmental impacts. Therefore, this LCA study may be applied to perform a sustainable improvement on sorbitol production process.Keywords: sorbitol; life cycle assessment; global warming potential


Sign in / Sign up

Export Citation Format

Share Document