scholarly journals The Anti-Inflammatory Effect and Mucosal Barrier Protection of Clostridium butyricum RH2 in Ceftriaxone-Induced Intestinal Dysbacteriosis

Author(s):  
Yuyuan Li ◽  
Man Liu ◽  
He Liu ◽  
Xue Sui ◽  
Yinhui Liu ◽  
...  

This study aimed at determining the beneficial effect of Clostridium butyricum (CB) RH2 on ceftriaxone-induced dysbacteriosis. To this purpose, BALB/c mice were exposed to ceftriaxone (400 mg/ml) or not (control) for 7 days, and administered a daily oral gavage of low-, and high-dose CB RH2 (108 and 1010 CFU/ml, respectively) for 2 weeks. CB RH2 altered the diversity of gut microbiota, changed the composition of gut microbiota in phylum and genus level, decreased the F/B ratio, and decreased the pro-inflammatory bacteria (Deferribacteres, Oscillibacter, Desulfovibrio, Mucispirillum and Parabacteroides) in ceftriaxone-treated mice. Additionally, CB RH2 improved colonic architecture and intestinal integrity by improving the mucous layer and the tight junction barrier. Furthermore, CB RH2 also mitigated intestinal inflammation through decreasing proinflammatory factors (TNF-α and COX-2) and increasing anti-inflammatory factors (IL-10). CB RH2 had direct effects on the expansion of CD4+ T cells in Peyer’s patches (PPs) in vitro, which in turn affected their immune response upon challenge with ceftriaxone. All these data suggested that CB RH2 possessed the ability to modulate the intestinal mucosal and systemic immune system in limiting intestinal alterations to relieve ceftriaxone-induced dysbacteriosis.

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Boxun Zhang ◽  
Rensong Yue ◽  
Yuan Chen ◽  
Xiaoying Huang ◽  
Maoyi Yang ◽  
...  

Recent studies have confirmed that increased intestinal permeability and gut-origin lipopolysaccharide (LPS) translocation are important causes of metabolic inflammation in type 2 diabetes (T2D), but there are no recognized therapies for targeting this pathological state. Scutellaria baicalensis and Coptis chinensis are a classic herbal pair often used to treat diabetes and various intestinal diseases, and repair of intestinal barrier damage may be at the core of their therapeutic mechanism. This study investigated the effects of oral administration of Scutellaria-Coptis (SC) on the intestinal mucosal barrier in diabetic rats and explored the underlying mechanism from the perspective of anti-inflammatory and gut microbiota-modulatory effects. The main results showed that, in addition to regulating glycolipid metabolism disorders and inhibiting serum inflammatory factors, SC could also upregulate the expression levels of the tight junction proteins claudin-1, occludin, and zonula occludens (ZO-1), significantly improve intestinal epithelial damage, and inhibit excessive LPS translocation into the blood circulation. Furthermore, it was found that SC could reduce the levels of the inflammatory factors interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) in intestinal tissue and that the anti-inflammatory effects involved the TLR-4/TRIF and TNFR-1/NF-κB signalling pathways. Moreover, SC had a strong inhibitory effect on some potential enteropathogenic bacteria and LPS-producing bacteria, such as Proteobacteria, Enterobacteriaceae, Enterobacter, Escherichia-Shigella, and Enterococcus, and could also promote the proliferation of butyrate-producing bacteria, such as Lachnospiraceae and Prevotellaceae. Taken together, the hypoglycaemic effects of SC were related to the protection of the intestinal mucosal barrier, and the mechanisms might be related to the inhibition of intestinal inflammation and the regulation of the gut microbiota.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 222 ◽  
Author(s):  
Wenhui Jin ◽  
Longhe Yang ◽  
Zhiwei Yi ◽  
Hua Fang ◽  
Weizhu Chen ◽  
...  

Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.


2019 ◽  
Vol 20 (16) ◽  
pp. 3974 ◽  
Author(s):  
Lulu Zhang ◽  
Xubiao Wei ◽  
Rijun Zhang ◽  
Dayong Si ◽  
James N. Petitte ◽  
...  

Intestinal inflammation is an inflammatory disease resulting from immune dysregulation in the gut. It can increase the risk of enteric cancer, which is a common malignancy globally. As a new class of anti-inflammatory agents, native peptides have potential for use in the treatment of several intestinal inflammation conditions; however, their potential cytotoxicity and poor anti-inflammatory activity and stability have prevented their development. Hybridization has been proposed to overcome this problem. Thus, in this study, we designed a hybrid peptide (LL-37-TP5, LTP) by combing the active centre of LL-37 (13–36) with TP5. The half-life and cytotoxicity were tested in vitro, and the hybrid peptide showed a longer half-life and lower cytotoxicity than its parental peptides. We also detected the anti-inflammatory effects and mechanisms of LTP on Lipopolysaccharide (LPS)-induced intestinal inflammation in murine model. The results showed that LTP effectively prevented LPS-induced weight loss, impairment of intestinal tissues, leukocyte infiltration, and histological evidence of inflammation. Additionally, LTP decreased the levels of tumour necrosis factor-alpha, interferon-gamma, and interleukin-6; increased the expression of zonula occludens-1 and occludin; and reduced permeability in the jejunum of LPS-treated mice. Notably, LTP appeared to be more potent than the parental peptides LL-37 and TP5. The anti-inflammatory effects of LTP may be associated with the neutralization of LPS, inhibition of oxidative stress, and inhibition of the NF-κB signalling pathway. The findings of this study suggest that LTP might be an effective therapeutic agent for treating intestinal inflammation.


2016 ◽  
Vol 29 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Katherine Gil-Cardoso ◽  
Iris Ginés ◽  
Montserrat Pinent ◽  
Anna Ardévol ◽  
Mayte Blay ◽  
...  

AbstractDiet-induced obesity is associated with low-grade inflammation, which, in most cases, leads to the development of metabolic disorders, primarily insulin resistance and type 2 diabetes. Although prior studies have implicated the adipose tissue as being primarily responsible for obesity-associated inflammation, the latest discoveries have correlated impairments in intestinal immune homeostasis and the mucosal barrier with increased activation of the inflammatory pathways and the development of insulin resistance. Therefore, it is essential to define the mechanisms underlying the obesity-associated gut alterations to develop therapies to prevent and treat obesity and its associated diseases. Flavonoids appear to be promising candidates among the natural preventive treatments that have been identified to date. They have been shown to protect against several diseases, including CVD and various cancers. Furthermore, they have clear anti-inflammatory properties, which have primarily been evaluated in non-intestinal models. At present, a growing body of evidence suggests that flavonoids could exert a protective role against obesity-associated pathologies by modulating inflammatory-related cellular events in the intestine and/or the composition of the microbiota populations. The present paper will review the literature to date that has described the protective effects of flavonoids on intestinal inflammation, barrier integrity and gut microbiota in studies conducted using in vivo and in vitro models.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jiqiao Yuan ◽  
Xuyu Li ◽  
Nan Fang ◽  
Ping Li ◽  
Ziqian Zhang ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease characterized by persistent airflow limitation but still lacking effective treatments. Perilla frutescens (L.) Britt., an important traditional medicinal plant with excellent antioxidant and anti-inflammatory properties, is widely used for the treatment of respiratory disease in China. However, its protective activity and mechanism against COPD airway inflammation have not been fully studied. Here, the anti-inflammatory effects of the PLE were investigated, and its underlying mechanisms were then elucidated. The presented results suggested a notable effect of the PLE on airway inflammation of COPD, by significantly ameliorating inflammatory cell infiltration in lung tissue, lessening leukocytes (lymphocytes, neutrophils, and macrophages) and inflammatory mediators (interleukin 4 (IL-4), IL-6, IL-17A, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α)) in the bronchoalveolar lavage fluid (BALF) of cigarette smoke (CS)/lipopolysaccharide (LPS)-induced COPD mice in vivo and inhibiting the production of inflammatory factors (nitric oxide (NO), IL-6, and TNF-α) and intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells in vitro. For further extent, PLE treatment significantly suppressed the expression and phosphorylation of TLR4, Syk, PKC, and NF-κB p65 in vivo and their mRNA in vitro. Subsequently, by co-treating with their inhibitors in vitro, its potential mechanism via TLR4/Syk/PKC/NF-κB p65 signals was disclosed. In summary, the obtained results indicated a noteworthy effective activity of the PLE on COPD inflammation, and partly, the TLR4/Syk/PKC/NF-κB p65 axis might be the potential mechanism.


2021 ◽  
Vol 9 (10) ◽  
pp. 2086
Author(s):  
Yin Liu ◽  
Shujuan Zheng ◽  
Jiale Cui ◽  
Tingting Guo ◽  
Jingtao Zhang ◽  
...  

Ulcerative colitis (UC) is a non-specific chronic inflammatory disease with lesions located in the colon and rectum. The aim of this study was to evaluate the anti-inflammatory effects of exopolysaccharide-1 (EPS-1) isolated by L. helveticus KLDS1.8701 on UC. The anti-inflammatory effects of EPS-1 were studied using dextran sulphate sodium (DSS)-induced UC model. In vivo results showed that EPS-1 administration significantly ameliorated weight loss, colon shortening, disease activity index (DAI) score, myeloperoxidase (MPO) activity, and colon tissue damage. In addition, EPS-1 administration significantly decreased the levels of pro-inflammatory cytokines and increased levels of anti-inflammatory cytokines. Meanwhile, EPS-1 administration significantly up-regulated the expression of tight junction proteins and mucin. Furthermore, EPS-1 administration modulated gut microbiota composition caused by DSS and increased the short-chain fatty acids (SCFAs) levels. Collectively, our study showed the alleviative effects of EPS- isolated by L. helveticus KLDS1.8701 on DSS-induced UC via alleviating intestinal inflammation, improving mucosal barrier function, and modulating gut microbiota composition.


2012 ◽  
Vol 110 (2) ◽  
pp. 206-215 ◽  
Author(s):  
Ildefonso Rodríguez-Ramiro ◽  
Sonia Ramos ◽  
Elvira López-Oliva ◽  
Angel Agis-Torres ◽  
Laura Bravo ◽  
...  

Numerous lines of evidence support a relationship between intestinal inflammation and cancer. Therefore, much attention has recently been focused on the identification of natural compounds with anti-inflammatory activities as a strategy to suppress the early stages of colorectal cancer. Because cocoa is a rich source of bioactive compounds, the present study investigated its anti-inflammatory properties in a rat model of azoxymethane (AOM)-induced colon carcinogenesis and in TNF-α-stimulated Caco-2 cells. A total of forty male rats were fed with control or cocoa-enriched diets (12 %) during 8 weeks and injected with saline or AOM (20 mg/kg body weight) during the third and fourth week (n10 rats/group). At the end of the experiment, colon samples were evaluated for markers of inflammation. The anti-inflammatory activity of a cocoa polyphenolic extract (10 μg/ml) was examined in TNF-α-stimulated Caco-2 cells, anin vitromodel of experimentally induced intestinal inflammation. The signalling pathways involved, including NF-κB and the mitogen-activated protein kinase family such as c-Jun NH2-terminal kinases (JNK), extracellular signal-regulated kinases and p38, were also evaluated. The results show that the cocoa-rich diet decreases the nuclear levels of NF-κB and the expression of pro-inflammatory enzymes such as cyclo-oxygenase-2 and inducible NO synthase induced by AOM in the colon. Additionally, the experiments in Caco-2 cells confirm that cocoa polyphenols effectively down-regulate the levels of inflammatory markers induced by TNF-α by inhibiting NF-κB translocation and JNK phosphorylation. We conclude that cocoa polyphenols suppress inflammation-related colon carcinogenesis and could be promising in the dietary prevention of intestinal inflammation and related cancer development.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Katharina Mörs ◽  
Ramona Sturm ◽  
Jason-Alexander Hörauf ◽  
Shinwan Kany ◽  
Paola Cavalli ◽  
...  

Background. In several preclinical and in vitro models of acute inflammation, alcohol (ethanol, EtOH) has been described as an immunomodulatory agent. Similarly, in different pathologies, clinical observations have confirmed either pro- or anti-inflammatory effects of EtOH. The liver plays an important role in immunity and alcohol metabolism; therefore, we analysed dose- and time-dependent effects of EtOH on the inflammatory response of human liver cells in an in vitro model of acute inflammation. Methods. HepG2 cells were stimulated with IL-1β and subsequently exposed to EtOH in a low or high dose (85 mM, LoD or 170 mM, HiD) for 1 h (acute exposure) or 72 h (prolonged exposure). IL-6 and TNF-α release was determined by ELISA. Cell viability, adhesion of isolated neutrophils to HepG2 monolayers, their ICAM-1 expression, and the activation of stress-induced protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or signal transducer and activator of transcription 3 (STAT3) were analysed. Results. In this experimental design, EtOH did not markedly change the cell viability. Acute and prolonged exposure to EtOH significantly reduced dose-independent IL-1β-induced IL-6 and TNF-α release, as well as adhesion capacity to pretreated HepG2 cells. Acute exposure to EtOH significantly decreased the percentage of ICAM-1-expressing cells. IL-1β stimulation notably increased the activation of SAPK/JNK. However, low-dose EtOH exposure reduced this activation considerably, in contradiction to high-dose EtOH exposure. Acute exposure to LoD EtOH significantly diminished the IL-1β-induced STAT3 activation, whereas an acute exposure of cells to either HiD EtOH or in a prolonged setting showed no effects on STAT3 activation. Conclusion. EtOH exerts anti-inflammatory potential in this in vitro model of hepatic inflammation. These effects are associated with the reduced activation of JNK/STAT3 by EtOH, particularly in the condition of acute exposure to low-dose EtOH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haining Hao ◽  
Xinyi Zhang ◽  
Lingjun Tong ◽  
Qiqi Liu ◽  
Xi Liang ◽  
...  

Probiotics plays an important role in regulating gut microbiota and maintaining intestinal homeostasis. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the anti-inflammatory effect and mechanism of probiotics derived EVs on inflammatory bowel disease (IBD) remains unclear. In this study, the effect of Lactobacillus plantarum Q7-derived extracellular vesicles (Q7-EVs) on gut microbiota and intestinal inflammation was investigated in C57BL/6J mice. The results showed that Q7-EVs alleviated DSS-induced colitis symptoms, including colon shortening, bleeding, and body weight loss. Consumption of Q7-EVs reduced the degree of histological damage. DSS-upregulated proinflammatory cytokine levels including IL-6, IL-1β, IL-2 and TNF-α were reduced significantly by Q7-EVs (p < 0.05). 16S rRNA sequencing results showed that Q7-EVs improved the dysregulation of gut microbiota and promoted the diversity of gut microbiota. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the anti-inflammatory bacteria (Bifidobacteria and Muribaculaceae) were increased. These findings indicated that Q7-EVs might alleviate DSS-induced ulcerative colitis by regulating the gut microbiota.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Sign in / Sign up

Export Citation Format

Share Document