scholarly journals Prevalence of Chronic Diseases and Alterations of Gut Microbiome in People of Ningxia China During Urbanization: An Epidemiological Survey

Author(s):  
Yong Du ◽  
Lu Ding ◽  
Li Na ◽  
Ting Sun ◽  
Xian Sun ◽  
...  

The continuous development of urbanization has dramatically changed people’s living environment and lifestyle, accompanied by the increased prevalence of chronic diseases. However, there is little research on the effect of urbanization on gut microbiome in residents. Here we investigated the relation between living environment and gut microbiota in a homogenous population along an urban-rural gradient in Ningxia China. According to the degree of urbanization, the population is divided into four groups: mountainous rural (MR) represents non-urbanized areas, mountainous urban (MU) and plain rural (PR) represent preliminary urbanization, and plain urban (PU) is a representative of complete urbanization. Studies have found that with the deepening of urbanization, the prevalence of chronic diseases, such as diabetes, dyslipidemia, fatty liver, gallstones, and renal cysts, have gradually increased. The intestinal richness and diversity of the microbial community were significantly reduced in the PR and the PU groups compared with the MR and the MU groups. Based on linear discriminant analysis selection, the significantly enriched genera Faecalibacterium, Prevotella, and Pseudobutyrivibrio in the MR group gradually decreased in the MU, the PR, and the PU groups. Effect size results revealed that both residence and diet had an effect on intestinal microbiota. Our results suggested that the disparate patterns of gut microbiota composition were revealed at different levels of urbanization, providing an opportunity to understand the pathogenesis of chronic diseases and the contribution of the “rural microbiome” in potential protection against the occurrence of chronic diseases.

2020 ◽  
Author(s):  
Yong Du ◽  
Lu Ding ◽  
Li Na ◽  
Ting Sun ◽  
Xian Sun ◽  
...  

Abstract Background: In the 21st century, the continuous development of urbanization has dramatically changed people's living environment and lifestyle. The urban environment and the lifestyles it formed are accompanied by the risks that would threaten the health of individuals, as shown by the increased prevalence of chronic diseases. However, there is little research on the effect of urbanization on gut microbiome in residents.Results: Here we investigated the relation between living environment and gut microbiota in a homogenous population along an urban-rural gradient in Ningxia China. According to the degree of urbanization, the population is divided into four groups: mountainous rural (MR) represents non-urbanized areas, mountainous urban (MU) and plain rural (PR) represent preliminary urbanization, and plain urban (PU) is a representative of complete urbanization. Studies have found that with the deepening of urbanization, the prevalence of chronic diseases, such as diabetes, dyslipidemia, fatty liver, gallstones, and renal cysts, have gradually increased. The intestinal richness and diversity of the microbial community were significantly reduced in the PR and the PU groups compared with the MR and the MU groups. At the phylum level, the abundance of Proteobacteria gradually increased, while the abundance of Actinobacteria gradually decreased in the MU and the PR groups compared with the MR group. Based on linear discriminant analysis selection, the significantly enriched genera Faecalibacterium, Prevotella, and Pseudobutyrivibrio in the MR group gradually decreased in the MU, the PR, and the PU groups. Effect size results revealed that both residence and diet had an effect on intestinal microbiota.Conclusions: Urbanization attenuates gut microbial diversity and richness and might play a role in the pathogenesis of chronic diseases. Environmental exposure during urbanization, such as westernization of diet and pollution have been shown to affect gut microbiota. In this study, the disparate patterns of gut microbiota composition were revealed at different levels of urbanization, providing an opportunity to understand the pathogenesis of chronic diseases and the contribution of the “rural microbiome” in potential protection against the occurrence of chronic diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Author(s):  
Jiabin Chen ◽  
Sheng Wang ◽  
Jianfei Shen ◽  
Qinqin Hu ◽  
Yongjun Zhang ◽  
...  

In Lung adenocarcinoma (ADC), Qi-Yin deficiency syndrome (QY) is the most common Traditional Chinese medicine (TCM) syndrome. This study aimed to investigate the diversity and composition of gut microbiota in ADC patients with QY syndrome. 90 stool samples, including 30 healthy individuals (H), 30 ADC patients with QY syndrome, and 30 ADC patients with another syndrome (O) were collected. Then, 16s-RNA sequencing was used to analyze stool samples to clarify the structure of gut microbiota, and linear discriminant analysis (LDA) effect size (LEfSe) was applied to identify biomarkers for ADC with QY syndrome. Logistic regression analysis was performed to establish a diagnostic model for the diagnosis of QY syndrome in ADC patients, which was assessed with the AUC. Finally, 20 fecal samples (QY: 10; O: 10) were analyzed with Metagenomics to validate the diagnostic model. The [Formula: see text] diversity and [Formula: see text] diversity demonstrated that the structure of gut microbiota in the QY group was different from that of the H group and O group. In the QY group, the top 3 taxonomies at phylum level were Firmicutes, Bacteroidetes, and Proteobacteria, and at genus level were Faecalibacterium, Prevotella_9, and Bifidobacterium. LEfSe identified Prevotella_9 and Streptococcus might be the biomarkers for QY syndrome. A diagnostic model was constructed using those 2 genera with the AUC = 0.801, similar to the AUC based on Metagenomics (0.842). The structure of gut microbiota in ADC patients with QY syndrome was investigated, and a diagnostic model was developed for the diagnosis of QY syndrome in ADC patients, which provides a novel idea for the understanding and diagnosis of TCM syndrome.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S896-S897
Author(s):  
Faris S Alnezary ◽  
Tasnuva Rashid ◽  
Khurshida Begum ◽  
Travis J Carlson ◽  
Anne J Gonzales-Luna ◽  
...  

Abstract Background Antimicrobials disrupt the gut microbiota by reducing gut microbiome diversity and quantity. Galleria mellonella provides an invertebrate model that is inexpensive, easy to maintain, and does not require specialized equipment. This study investigated the feasibility of using G. mellonella as an in vivo model to evaluate the effect of different antimicrobials on gut microbiota. Methods To determine baseline gut microbiota composition, the gut contents of G. mellonella were extracted and genomic DNA underwent shotgun meta-genomic sequencing. To determine the effect of infection and antibiotic use, 30 larvae were injected (left proleg) with ~1 × 105 colony-forming unit (cfu) of methicillin-resistant Staphylococcus aureus (MRSA) and were randomized 1:1:1 to treatment with vancomycin (20 mg/kg) or a natural antimicrobial (Nigella sativa seed oil, 70 mg/kg; NS oil), or a combination. The larvae were kept at 37°C post-infection and monitored daily for 72 hours for activity, extent of cocoon formation/growth, melanization, and survival. Two larvae from each group were randomly selected and homogenized with PBS as controls. After 24 hours of incubation, gut contents were extracted and plated for MRSA and Enterococcus cfu counts. Results Metagenomics analysis showed the gut microbiota composition of G. mellonella larvae was dominated by a subset of closely-related Enterococcus species. After 24 hours of exposure, mean Enterococcus counts were 4 × 103 cfu in the vancomycin arm and 6.2 × 104 cfu in the NS oil arm. Mean MRSA counts were 3.3 × 105 cfu in vancomycin arm and 1.5 × 104 cfu in NS oil arm. The combination of vancomycin and NS oil had higher Enterococcus counts than the vancomycin alone arm (6.3 × 104 cfu vs. 4 × 103 cfu, respectively), suggesting that NS oil may have a role in protecting the gut microbiota. Conclusion This study provides preliminary evidence to support the potential use of G. mellonella to assess the in vivo effect of a natural and synthetic antimicrobial on the gut microbiota. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yinlong Cheng ◽  
Yining Li ◽  
Yonghong Xiong ◽  
Yixin Zou ◽  
Siyu Chen ◽  
...  

Abstract Purpose To investigate the effect of liver-specific knockdown of ANGPTL8 on the structure of the gut microbiota. Methods We constructed mice with liver-specific ANGPTL8 knockdown by using an adeno-associated virus serotype 8 (AAV8) system harbouring an ANGPTL8 shRNA. We analysed the structure and function of the gut microbiome through pyrosequencing and KEGG (Kyoto Encyclopedia of Genes and Genomes) functional prediction. Results Compared with controls, ANGPTL8 shRNA reduced the Simpson index and Shannon index (p < 0.01) of the gut microbiota in mice. At the phylum level, the sh-ANGPTL8 group showed a healthier gut microbiota composition than controls (Bacteroidetes: controls 67.52%, sh-ANGPTL8 80.75%; Firmicutes: controls 10.96%, sh-ANGPTL8 8.58%; Proteobacteria: controls 9.29%, sh-ANGPTL8 0.98%; F/B ratio: controls 0.16, sh-ANGPTL8 0.11). PCoA and UPGMA analysis revealed a significant difference in microbiota composition, while KEGG analysis revealed a significant difference in microbiota function between controls and the sh-ANGPTL8 group. Conclusion Our results revealed that inhibition of ANGPTL8 signalling altered the structure of the gut microbiome, which might further affect the metabolism of mice. We have thus identified ANGPTL8 as a novel hepatogenic hormone potentially involving the liver-gut axis and regulating the structure of the gut microbiota.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Jessica C. Ralston ◽  
Kathleen A.J. Mitchelson ◽  
Gina M. Lynch ◽  
Tam T.T. Tran ◽  
Conall R. Strain ◽  
...  

AbstractReduced inflammatory signaling (IL-1RI-/-) alters metabolic responses to dietary challenges (1). Inflammasome deficiency (e.g. IL-18-/-, Asc-/-) can modify gut microbiota concomitant with hepatosteatosis; an effect that was transferable to wild-type (WT) mice by co-housing (2). Taken together, this evidence suggests that links between diet, microbiota and IL-1RI-signaling can influence metabolic health. Our aim was to determine whether IL-1RI-mediated signaling interacted with the gut microbiome to impact metabolic tissue functionality in a diet-specific fashion. Male WT (C57BL/J6) and IL-1RI-/- mice were fed either high-fat diet (HFD; 45% kcal) or low-fat diet (LFD; 10% kcal) for 24 weeks and were housed i) separately by genotype or ii) with genotypes co-housed together (i.e. isolated vs shared microbial environment; n = 8–10 mice per group). Glucose tolerance and insulin secretion response (1.5 g/kg i.p.), gut microbiota composition and caecal short-chain fatty acids (SCFA) were assessed. Liver and adipose tissue were harvested and examined for triacylglycerol (TAG) formation, cholesterol and metabolic markers (Fasn, Cpt1α, Pparg, Scd1, Dgat1/2), using histology, gas-chromatography and RT-PCR, respectively. Statistical analysis included 1-way or 2-way ANOVA, where appropriate, with Bonferroni post-hoc correction. Co-housing significantly affected gut microbiota composition, illustrated by clustering in PCoA (unweighted UniFrac distance) of co-housed mice but not their single-housed counterparts, on both HFD and LFD. The taxa driving these differences were primarily from Lachnospiraceae and Ruminococcaceae families. Single-housed WT had lower hepatic weight, TAG, cholesterol levels and Fasn despite HFD, an effect lost in their co-housed counterparts, who aligned more to IL-1RI-/- hepatic lipid status. Hepatic Cpt1α was lowest in co-housed WT. Adipose from IL-1RI-/- groups on HFD displayed increased adipocyte size and reduced adipocyte number compared to WT groups, but greater lipogenic potential (Pparg, Scd1, Dgat2) alongside a blunted IL-6 response to pro-inflammatory stimuli (~32%, P = 0.025). Whilst caecal SCFA concentrations were not different between groups, single-housed IL-1RI-/- adipocytes showed greatest sensitivity to SCFA-induced lipogenesis. Interestingly, differences in tissue functionality and gut microbiome occurred despite unaltered glucose tolerance; although there was a trend for phenotypic transfer of body weight via co-housing. For all endpoints examined, similar genotype/co-housing effects were observed for both HFD and LFD with the greatest impacts seen in HFD-fed mice. In conclusion, while the gut microbiome may be an important consideration in dietary interventions, these results question the magnitude of its impact in relation to the IL-1RI-dependent immunometabolism-glucose homeostasis axis.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 748 ◽  
Author(s):  
Jin-Young Lee ◽  
Mohamed Mannaa ◽  
Yunkyung Kim ◽  
Jehun Kim ◽  
Geun-Tae Kim ◽  
...  

The aim of this study was to investigate differences between the gut microbiota composition in patients with rheumatoid arthritis (RA) and those with osteoarthritis (OA). Stool samples from nine RA patients and nine OA patients were collected, and DNA was extracted. The gut microbiome was assessed using 16S rRNA gene amplicon sequencing. The structures and differences in the gut microbiome between RA and OA were analyzed. The analysis of diversity revealed no differences in the complexity of samples. The RA group had a lower Bacteroidetes: Firmicutes ratio than did the OA group. Lactobacilli and Prevotella, particularly Prevotella copri, were more abundant in the RA than in the OA group, although these differences were not statistically significant. The relative abundance of Bacteroides and Bifidobacterium was lower in the RA group. At the species level, the abundance of certain bacterial species was significantly lower in the RA group, such as Fusicatenibacter saccharivorans, Dialister invisus, Clostridium leptum, Ruthenibacterium lactatiformans, Anaerotruncus colihominis, Bacteroides faecichinchillae, Harryflintia acetispora, Bacteroides acidifaciens, and Christensenella minuta. The microbial properties of the gut differed between RA and OA patients, and the RA dysbiosis revealed results similar to those of other autoimmune diseases, suggesting that a specific gut microbiota pattern is related to autoimmunity.


2021 ◽  
Author(s):  
Temitope Sanusi-Olubowale

The world is experiencing an increase in chronic diseases like diabetes, inflammatory bowel diseases, cancer, cardiovascular diseases, obesity, and diabetes preceding disease like gestational diabetes. Most of these diseases can be prevented and mitigated if individuals pay attention to the causative factors. One of such factors is the type of microorganisms in an individual’s gut. Even though there are innate beneficial microorganisms in the human gut, pathogenic microorganisms can invade the gut, changing the inborn population of the gut microbiota. The changes in the gut microbiota population have been linked to several diseases. This chapter, therefore, describes gut microbiota and their interaction with specific diseases. Also discussed in this chapter are the changes to gut microbiota composition that pose a risk to the host. There is substantial evidence that diseases are initiated or worsened with a change in the gut microbiota composition. Therefore, the gut microbiota plays a crucial role in individuals’ health and requires human efforts to keep them in the right population. Furthermore, making lifestyle changes, particularly food choices and behaviors such as the misuse of medications and excessive alcohol consumption, should be monitored and controlled to support gut health.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3289
Author(s):  
Manon Balvers ◽  
Mélanie Deschasaux ◽  
Bert-Jan van den Born ◽  
Koos Zwinderman ◽  
Max Nieuwdorp ◽  
...  

It is currently unknown whether associations between gut microbiota composition and type 2 diabetes (T2D) differ according to the ethnic background of individuals. Thus, we studied these associations in participants from two ethnicities characterized by a high T2D prevalence and living in the same geographical area, using the Healthy Life In Urban Settings (HELIUS) study. We included 111 and 128 T2D participants on metformin (Met-T2D), 78 and 49 treatment-naïve T2D (TN-T2D) participants, as well as a 1:1 matched group of healthy controls from, respectively, African Surinamese and South-Asian Surinamese descent. Fecal microbiome profiles were obtained through 16S rRNA gene sequencing. Univariate and machine learning analyses were used to explore the associations between T2D and the composition and function of the gut microbiome in both ethnicities, comparing Met-T2D and TN-T2D participants to their respective healthy control. We found a lower α-diversity for South-Asian Surinamese TN-T2D participants but no significant associations between TN-T2D status and the abundance of bacterial taxa or functional pathways. In African Surinamese participants, we did not find any association between TN-T2D status and the gut microbiome. With respect to Met-T2D participants, we identified several bacterial taxa and functional pathways with a significantly altered abundance in both ethnicities. More alterations were observed in South-Asian Surinamese. Some altered taxa and pathways observed in both ethnicities were previously related to metformin use. This included a strong negative association between the abundance of Romboutsia and Met-T2D status. Other bacterial taxa were consistent with previous observations in T2D, including reduced butyrate producers such as Anaerostipes hadrus. Hence, our results highlighted both shared and unique gut microbial biomarkers of Met-T2D in individuals from different ethnicities but living in the same geographical area. Future research using higher-resolution shotgun sequencing is needed to clarify the role of ethnicity in the association between T2D and gut microbiota composition.


Author(s):  
Ghada Araji ◽  
Julian Maamari ◽  
Fatima Ali Ahmad ◽  
Rana Zareef ◽  
Patrick Chaftari ◽  
...  

ABSTRACT The discovery of immune checkpoint inhibitors (ICIs) has revolutionized the care of cancer patients. However, the response to ICI therapy exhibits substantial interindividual variability. Efforts have been directed to identify biomarkers that predict the clinical response to ICIs. In recent years, the gut microbiome has emerged as a critical player that influences the efficacy of immunotherapy. An increasing number of studies have suggested that the baseline composition of a patient's gut microbiota and its dysbiosis are correlated with the outcome of cancer immunotherapy. This review tackles the rapidly growing body of evidence evaluating the relationship between the gut microbiome and the response to ICI therapy. Additionally, this review highlights the impact of antibiotic-induced dysbiosis on ICI efficacy and discusses the possible therapeutic interventions to optimize the gut microbiota composition to augment immunotherapy efficacy.


Sign in / Sign up

Export Citation Format

Share Document