scholarly journals The Predictive Value of Myoglobin for COVID-19-Related Adverse Outcomes: A Systematic Review and Meta-Analysis

2021 ◽  
Vol 8 ◽  
Author(s):  
Chaoqun Ma ◽  
Dingyuan Tu ◽  
Jiawei Gu ◽  
Qiang Xu ◽  
Pan Hou ◽  
...  

Objective: Cardiac injury is detected in numerous patients with coronavirus disease 2019 (COVID-19) and has been demonstrated to be closely related to poor outcomes. However, an optimal cardiac biomarker for predicting COVID-19 prognosis has not been identified.Methods: The PubMed, Web of Science, and Embase databases were searched for published articles between December 1, 2019 and September 8, 2021. Eligible studies that examined the anomalies of different cardiac biomarkers in patients with COVID-19 were included. The prevalence and odds ratios (ORs) were extracted. Summary estimates and the corresponding 95% confidence intervals (95% CIs) were obtained through meta-analyses.Results: A total of 63 studies, with 64,319 patients with COVID-19, were enrolled in this meta-analysis. The prevalence of elevated cardiac troponin I (cTnI) and myoglobin (Mb) in the general population with COVID-19 was 22.9 (19–27%) and 13.5% (10.6–16.4%), respectively. However, the presence of elevated Mb was more common than elevated cTnI in patients with severe COVID-19 [37.7 (23.3–52.1%) vs.30.7% (24.7–37.1%)]. Moreover, compared with cTnI, the elevation of Mb also demonstrated tendency of higher correlation with case-severity rate (Mb, r = 13.9 vs. cTnI, r = 3.93) and case-fatality rate (Mb, r = 15.42 vs. cTnI, r = 3.04). Notably, elevated Mb level was also associated with higher odds of severe illness [Mb, OR = 13.75 (10.2–18.54) vs. cTnI, OR = 7.06 (3.94–12.65)] and mortality [Mb, OR = 13.49 (9.3–19.58) vs. cTnI, OR = 7.75 (4.4–13.66)] than cTnI.Conclusions: Patients with COVID-19 and elevated Mb levels are at significantly higher risk of severe disease and mortality. Elevation of Mb may serve as a marker for predicting COVID-19-related adverse outcomes.Prospero Registration Number:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020175133, CRD42020175133.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dilip Jayasimhan ◽  
Simon Foster ◽  
Catherina L. Chang ◽  
Robert J. Hancox

Abstract Background Acute respiratory distress syndrome (ARDS) is a leading cause of morbidity and mortality in the intensive care unit. Biochemical markers of cardiac dysfunction are associated with high mortality in many respiratory conditions. The aim of this systematic review is to examine the link between elevated biomarkers of cardiac dysfunction in ARDS and mortality. Methods A systematic review of MEDLINE, EMBASE, Web of Science and CENTRAL databases was performed. We included studies of adult intensive care patients with ARDS that reported the risk of death in relation to a measured biomarker of cardiac dysfunction. The primary outcome of interest was mortality up to 60 days. A random-effects model was used for pooled estimates. Funnel-plot inspection was done to evaluate publication bias; Cochrane chi-square tests and I2 tests were used to assess heterogeneity. Results Twenty-two studies were included in the systematic review and 18 in the meta-analysis. Biomarkers of cardiac stretch included NT-ProBNP (nine studies) and BNP (six studies). Biomarkers of cardiac injury included Troponin-T (two studies), Troponin-I (one study) and High-Sensitivity-Troponin-I (three studies). Three studies assessed multiple cardiac biomarkers. High levels of NT-proBNP and BNP were associated with a higher risk of death up to 60 days (unadjusted OR 8.98; CI 4.15-19.43; p<0.00001). This association persisted after adjustment for age and illness severity. Biomarkers of cardiac injury were also associated with higher mortality, but this association was not statistically significant (unadjusted OR 2.21; CI 0.94-5.16; p= 0.07). Conclusion Biomarkers of cardiac stretch are associated with increased mortality in ARDS.


Hypertension ◽  
2020 ◽  
Vol 76 (4) ◽  
pp. 1104-1112 ◽  
Author(s):  
Juan-Juan Qin ◽  
Xu Cheng ◽  
Feng Zhou ◽  
Fang Lei ◽  
Gauri Akolkar ◽  
...  

The prognostic power of circulating cardiac biomarkers, their utility, and pattern of release in coronavirus disease 2019 (COVID-19) patients have not been clearly defined. In this multicentered retrospective study, we enrolled 3219 patients with diagnosed COVID-19 admitted to 9 hospitals from December 31, 2019 to March 4, 2020, to estimate the associations and prognostic power of circulating cardiac injury markers with the poor outcomes of COVID-19. In the mixed-effects Cox model, after adjusting for age, sex, and comorbidities, the adjusted hazard ratio of 28-day mortality for hs-cTnI (high-sensitivity cardiac troponin I) was 7.12 ([95% CI, 4.60–11.03] P <0.001), (NT-pro)BNP (N-terminal pro-B-type natriuretic peptide or brain natriuretic peptide) was 5.11 ([95% CI, 3.50–7.47] P <0.001), CK (creatine phosphokinase)-MB was 4.86 ([95% CI, 3.33–7.09] P <0.001), MYO (myoglobin) was 4.50 ([95% CI, 3.18–6.36] P <0.001), and CK was 3.56 ([95% CI, 2.53–5.02] P <0.001). The cutoffs of those cardiac biomarkers for effective prognosis of 28-day mortality of COVID-19 were found to be much lower than for regular heart disease at about 19%–50% of the currently recommended thresholds. Patients with elevated cardiac injury markers above the newly established cutoffs were associated with significantly increased risk of COVID-19 death. In conclusion, cardiac biomarker elevations are significantly associated with 28-day death in patients with COVID-19. The prognostic cutoff values of these biomarkers might be much lower than the current reference standards. These findings can assist in better management of COVID-19 patients to improve outcomes. Importantly, the newly established cutoff levels of COVID-19–associated cardiac biomarkers may serve as useful criteria for the future prospective studies and clinical trials.


2020 ◽  
Author(s):  
Tarun Dalia ◽  
Shubham Lahan ◽  
Sagar Ranka ◽  
Prakash Acharya ◽  
Archana Gautam ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) has been reported to cause worse outcomes in patients with underlying cardiovascular disease, especially in patients with acute cardiac injury, which is determined by elevated levels of high-sensitivity troponin. There is a paucity of data on the impact of congestive heart failure (CHF) on outcomes in COVID-19 patients. Methods: We conducted a literature search of PubMed/Medline, EMBASE, and Google Scholar databases from 11/1/2019 till 06/07/2020, and identified all relevant studies reporting cardiovascular comorbidities, cardiac biomarkers, disease severity, and survival. Pooled data from the selected studies were used for metanalysis to identify the impact of risk factors and cardiac biomarker elevation on disease severity and/or mortality. Results: We collected pooled data on 5,967 COVID-19 patients from 20 individual studies. We found that both non-survivors and those with severe disease had an increased risk of acute cardiac injury and cardiac arrhythmias, our pooled relative risk (RR) was - 8.52 (95% CI 3.63-19.98) (p<0.001); and 3.61 (95% CI 2.03-6.43) (p=0.001), respectively. Mean difference in the levels of Troponin-I, CK-MB, and NT-proBNP was higher in deceased and severely infected patients. The RR of in-hospital mortality was 2.35 (95% CI 1.18-4.70) (p=0.022) and 1.52 (95% CI 1.12-2.05) (p=0.008) among patients who had pre-existing CHF and hypertension, respectively. Conclusion: Cardiac involvement in COVID-19 infection appears to significantly adversely impact patient prognosis and survival. Pre-existence of CHF and high cardiac biomarkers like NT-pro BNP and CK-MB levels in COVID-19 patients correlates with worse outcomes. Keywords: Acute cardiac injury; cardiac arrhythmia; mortality risk; cardiac biomarkers, COVID-19.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247461 ◽  
Author(s):  
Adam Booth ◽  
Angus Bruno Reed ◽  
Sonia Ponzo ◽  
Arrash Yassaee ◽  
Mert Aral ◽  
...  

Aim COVID-19 clinical presentation is heterogeneous, ranging from asymptomatic to severe cases. While there are a number of early publications relating to risk factors for COVID-19 infection, low sample size and heterogeneity in study design impacted consolidation of early findings. There is a pressing need to identify the factors which predispose patients to severe cases of COVID-19. For rapid and widespread risk stratification, these factors should be easily obtainable, inexpensive, and avoid invasive clinical procedures. The aim of our study is to fill this knowledge gap by systematically mapping all the available evidence on the association of various clinical, demographic, and lifestyle variables with the risk of specific adverse outcomes in patients with COVID-19. Methods The systematic review was conducted using standardized methodology, searching two electronic databases (PubMed and SCOPUS) for relevant literature published between 1st January 2020 and 9th July 2020. Included studies reported characteristics of patients with COVID-19 while reporting outcomes relating to disease severity. In the case of sufficient comparable data, meta-analyses were conducted to estimate risk of each variable. Results Seventy-six studies were identified, with a total of 17,860,001 patients across 14 countries. The studies were highly heterogeneous in terms of the sample under study, outcomes, and risk measures reported. A large number of risk factors were presented for COVID-19. Commonly reported variables for adverse outcome from COVID-19 comprised patient characteristics, including age >75 (OR: 2.65, 95% CI: 1.81–3.90), male sex (OR: 2.05, 95% CI: 1.39–3.04) and severe obesity (OR: 2.57, 95% CI: 1.31–5.05). Active cancer (OR: 1.46, 95% CI: 1.04–2.04) was associated with increased risk of severe outcome. A number of common symptoms and vital measures (respiratory rate and SpO2) also suggested elevated risk profiles. Conclusions Based on the findings of this study, a range of easily assessed parameters are valuable to predict elevated risk of severe illness and mortality as a result of COVID-19, including patient characteristics and detailed comorbidities, alongside the novel inclusion of real-time symptoms and vital measurements.


2020 ◽  
Author(s):  
Adam Booth ◽  
Angus Bruno Reed ◽  
Sonia Ponzo ◽  
Arrash Yassaee ◽  
Mert Aral ◽  
...  

AbstractAimCOVID-19 clinical presentation is heterogeneous, ranging from asymptomatic to severe cases. While there are a number of early publications relating to risk factors for COVID-19 infection, low sample size and heterogeneity in study design impacted consolidation of early findings. There is a pressing need to identify the factors which predispose patients to severe cases of COVID-19. For rapid and widespread risk stratification, these factors should be easily obtainable, inexpensive, and avoid invasive clinical procedures. The aim of our study is to fill this knowledge gap by systematically mapping all the available evidence on the association of various clinical, demographic, and lifestyle variables with the risk of specific adverse outcomes in patients with COVID-19.MethodsThe systematic review was conducted using standardized methodology, searching three electronic databases (PubMed, Embase, and Web of Science) for relevant literature published between 1st January 2020 and 9th July 2020. Included studies reported characteristics of patients with COVID-19 while reporting outcomes relating to disease severity. In the case of sufficient comparable data, meta-analyses were conducted to estimate risk of each variable.ResultsSeventy-six studies were identified, with a total of 17,860,001 patients across 14 countries. The studies were highly heterogeneous in terms of the sample under study, outcomes, and risk measures reported. A large number of risk factors were presented for COVID-19. Commonly reported variables for adverse outcome from COVID-19 comprised patient characteristics, including age >75 (OR = 2.65 (1.81–3.90)), male sex (OR = 2.05(1.39–3.04)) and severe obesity (OR = 2.57 (1.31–5.05)). Active cancer (OR = 1.46 (1.04–2.04)) was associated with increased risk of severe outcome. A number of common symptoms and vital measures (respiratory rate and SpO2) also suggested elevated risk profiles.ConclusionsBased on the findings of this study, a range of easily assessed parameters are valuable to predict elevated risk of severe illness and mortality as a result of COVID-19, including patient characteristics and detailed comorbidities, alongside the novel inclusion of real-time symptoms and vital measurements.


2020 ◽  
Vol 58 (7) ◽  
pp. 1021-1028 ◽  
Author(s):  
Brandon Michael Henry ◽  
Maria Helena Santos de Oliveira ◽  
Stefanie Benoit ◽  
Mario Plebani ◽  
Giuseppe Lippi

AbstractBackgroundAs coronavirus disease 2019 (COVID-19) pandemic rages on, there is urgent need for identification of clinical and laboratory predictors for progression towards severe and fatal forms of this illness. In this study we aimed to evaluate the discriminative ability of hematologic, biochemical and immunologic biomarkers in patients with and without the severe or fatal forms of COVID-19.MethodsAn electronic search in Medline (PubMed interface), Scopus, Web of Science and China National Knowledge Infrastructure (CNKI) was performed, to identify studies reporting on laboratory abnormalities in patients with COVID-19. Studies were divided into two separate cohorts for analysis: severity (severe vs. non-severe and mortality, i.e. non-survivors vs. survivors). Data was pooled into a meta-analysis to estimate weighted mean difference (WMD) with 95% confidence interval (95% CI) for each laboratory parameter.ResultsA total number of 21 studies was included, totaling 3377 patients and 33 laboratory parameters. While 18 studies (n = 2984) compared laboratory findings between patients with severe and non-severe COVID-19, the other three (n = 393) compared survivors and non-survivors of the disease and were thus analyzed separately. Patients with severe and fatal disease had significantly increased white blood cell (WBC) count, and decreased lymphocyte and platelet counts compared to non-severe disease and survivors. Biomarkers of inflammation, cardiac and muscle injury, liver and kidney function and coagulation measures were also significantly elevated in patients with both severe and fatal COVID-19. Interleukins 6 (IL-6) and 10 (IL-10) and serum ferritin were strong discriminators for severe disease.ConclusionsSeveral biomarkers which may potentially aid in risk stratification models for predicting severe and fatal COVID-19 were identified. In hospitalized patients with respiratory distress, we recommend clinicians closely monitor WBC count, lymphocyte count, platelet count, IL-6 and serum ferritin as markers for potential progression to critical illness.


Author(s):  
Panagiotis Paliogiannis ◽  
Arduino Aleksander Mangoni ◽  
Michela Cangemi ◽  
Alessandro Giuseppe Fois ◽  
Ciriaco Carru ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the most threatening pandemic in modern history. The aim of this systematic review and meta-analysis was to investigate the associations between serum albumin concentrations and COVID-19 disease severity and adverse outcomes. A systematic literature search was conducted in PubMed, from inception to October 30, 2020. Sixty-seven studies in 19,760 COVID-19 patients (6141 with severe disease or poor outcome) were selected for analysis. Pooled results showed that serum albumin concentrations were significantly lower in patients with severe disease or poor outcome (standard mean difference, SMD: − 0.99 g/L; 95% CI, − 1.11 to − 0.88, p < 0.001). In multivariate meta-regression analysis, age (t =  − 2.13, p = 0.043), publication geographic area (t = 2.16, p = 0.040), white blood cell count (t =  − 2.77, p = 0.008) and C-reactive protein (t =  − 2.43, p = 0.019) were significant contributors of between-study variance. Therefore, lower serum albumin concentrations are significantly associated with disease severity and adverse outcomes in COVID-19 patients. The assessment of serum albumin concentrations might assist with early risk stratification and selection of appropriate care pathways in this group.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Israel Júnior Borges do Nascimento ◽  
Dónal P. O’Mathúna ◽  
Thilo Caspar von Groote ◽  
Hebatullah Mohamed Abdulazeem ◽  
Ishanka Weerasekara ◽  
...  

Abstract Background Navigating the rapidly growing body of scientific literature on the SARS-CoV-2 pandemic is challenging, and ongoing critical appraisal of this output is essential. We aimed to summarize and critically appraise systematic reviews of coronavirus disease (COVID-19) in humans that were available at the beginning of the pandemic. Methods Nine databases (Medline, EMBASE, Cochrane Library, CINAHL, Web of Sciences, PDQ-Evidence, WHO’s Global Research, LILACS, and Epistemonikos) were searched from December 1, 2019, to March 24, 2020. Systematic reviews analyzing primary studies of COVID-19 were included. Two authors independently undertook screening, selection, extraction (data on clinical symptoms, prevalence, pharmacological and non-pharmacological interventions, diagnostic test assessment, laboratory, and radiological findings), and quality assessment (AMSTAR 2). A meta-analysis was performed of the prevalence of clinical outcomes. Results Eighteen systematic reviews were included; one was empty (did not identify any relevant study). Using AMSTAR 2, confidence in the results of all 18 reviews was rated as “critically low”. Identified symptoms of COVID-19 were (range values of point estimates): fever (82–95%), cough with or without sputum (58–72%), dyspnea (26–59%), myalgia or muscle fatigue (29–51%), sore throat (10–13%), headache (8–12%) and gastrointestinal complaints (5–9%). Severe symptoms were more common in men. Elevated C-reactive protein and lactate dehydrogenase, and slightly elevated aspartate and alanine aminotransferase, were commonly described. Thrombocytopenia and elevated levels of procalcitonin and cardiac troponin I were associated with severe disease. A frequent finding on chest imaging was uni- or bilateral multilobar ground-glass opacity. A single review investigated the impact of medication (chloroquine) but found no verifiable clinical data. All-cause mortality ranged from 0.3 to 13.9%. Conclusions In this overview of systematic reviews, we analyzed evidence from the first 18 systematic reviews that were published after the emergence of COVID-19. However, confidence in the results of all reviews was “critically low”. Thus, systematic reviews that were published early on in the pandemic were of questionable usefulness. Even during public health emergencies, studies and systematic reviews should adhere to established methodological standards.


BMJ Open ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. e017868
Author(s):  
Joey S.W. Kwong ◽  
Sheyu Li ◽  
Wan-Jie Gu ◽  
Hao Chen ◽  
Chao Zhang ◽  
...  

IntroductionEffective selection of coronary lesions for revascularisation is pivotal in the management of symptoms and adverse outcomes in patients with coronary artery disease. Recently, instantaneous ‘wave-free’ ratio (iFR) has been proposed as a new diagnostic index for assessing the severity of coronary stenoses without the need of pharmacological vasodilation. Evidence of the effectiveness of iFR-guided revascularisation is emerging and a systematic review is warranted.Methods and analysisThis is a protocol for a systematic review of randomised controlled trials and controlled observational studies. Electronic sources including MEDLINE via Ovid, Embase, Cochrane databases and ClinicalTrials.gov will be searched for potentially eligible studies investigating the effects of iFR-guided strategy in patients undergoing coronary revascularisation. Studies will be selected against transparent eligibility criteria and data will be extracted using a prestandardised data collection form by two independent authors. Risk of bias in included studies and overall quality of evidence will be assessed using validated methodological tools. Meta-analysis will be performed using the Review Manager software. Our systematic review will be performed according to the guidance from the Cochrane Handbook for Systematic Reviews of Interventions and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.Ethics and disseminationEthics approval is not required. Results of the systematic review will be disseminated as conference proceedings and peer-reviewed journal publication.Trial registration numberThis protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO), registration number CRD42017065460.


Sign in / Sign up

Export Citation Format

Share Document