scholarly journals Aeolian Remobilisation of Volcanic Ash: Outcomes of a Workshop in the Argentinian Patagonia

2020 ◽  
Vol 8 ◽  
Author(s):  
Paul A. Jarvis ◽  
Costanza Bonadonna ◽  
Lucia Dominguez ◽  
Pablo Forte ◽  
Corine Frischknecht ◽  
...  

During explosive volcanic eruptions, large quantities of tephra can be dispersed and deposited over wide areas. Following deposition, subsequent aeolian remobilisation of ash can potentially exacerbate primary impacts on timescales of months to millennia. Recent ash remobilisation events (e.g., following eruptions of Cordón Caulle 2011; Chile, and Eyjafjallajökull 2010, Iceland) have highlighted this to be a recurring phenomenon with consequences for human health, economic sectors, and critical infrastructure. Consequently, scientists from observatories and Volcanic Ash Advisory Centers (VAACs), as well as researchers from fields including volcanology, aeolian processes and soil sciences, convened at the San Carlos de Bariloche headquarters of the Argentinian National Institute of Agricultural Technology to discuss the “state of the art” for field studies of remobilised deposits as well as monitoring, modeling and understanding ash remobilisation. In this article, we identify practices for field characterisation of deposits and active processes, including mapping, particle characterisation and sediment traps. Furthermore, since forecast models currently rely on poorly-constrained dust emission schemes, we call for laboratory and field measurements to better parameterise the flux of volcanic ash as a function of friction velocity. While source area location and extent are currently the primary inputs for dispersion models, once emission schemes become more sophisticated and better constrained, other parameters will also become important (e.g., source material volume and properties, effective precipitation, type and distribution of vegetation cover, friction velocity). Thus, aeolian ash remobilisation hazard and associated impact assessment require systematic monitoring, including the development of a regularly-updated spatial database of resuspension source areas.

2020 ◽  
Vol 20 (10) ◽  
pp. 2721-2737 ◽  
Author(s):  
Sean D. Egan ◽  
Martin Stuefer ◽  
Peter W. Webley ◽  
Taryn Lopez ◽  
Catherine F. Cahill ◽  
...  

Abstract. Volcanic eruptions eject ash and gases into the atmosphere that can contribute to significant hazards to aviation, public and environment health, and the economy. Several volcanic ash transport and dispersion (VATD) models are in use to simulate volcanic ash transport operationally, but none include a treatment of volcanic ash aggregation processes. Volcanic ash aggregation can greatly reduce the atmospheric budget, dispersion and lifetime of ash particles, and therefore its impacts. To enhance our understanding and modeling capabilities of the ash aggregation process, a volcanic ash aggregation scheme was integrated into the Weather Research Forecasting with online Chemistry (WRF-Chem) model. Aggregation rates and ash mass loss in this modified code are calculated in line with the meteorological conditions, providing a fully coupled treatment of aggregation processes. The updated-model results were compared to field measurements of tephra fallout and in situ airborne measurements of ash particles from the April–May 2010 eruptions of Eyjafjallajökull volcano, Iceland. WRF-Chem, coupled with the newly added aggregation code, modeled ash clouds that agreed spatially and temporally with these in situ and field measurements. A sensitivity study provided insights into the mechanics of the aggregation code by analyzing each aggregation process (collision kernel) independently, as well as by varying the fractal dimension of the newly formed aggregates. In addition, the airborne lifetime (e-folding) of total domain ash mass was analyzed for a range of fractal dimensions, and a maximum reduction of 79.5 % of the airborne ash lifetime was noted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jooyong Lee ◽  
Sungsu Lee ◽  
HyunA Son ◽  
Waon-ho Yi

AbstractMt. Baekdu’s eruption precursors are continuously observed and have become a global social issue. Volcanic activities in neighboring Japan are also active. There are no direct risks of proximity-related disasters in South Korea from the volcanic eruptions at Japan or Mt. Baekdu; however, severe impacts are expected from the spread of volcanic ash. Numerical analysis models are generally used to predict and analyze the diffusion of volcanic ash, and each numerical analysis model has its own limitations caused by the computational algorithm it employs. In this study, we analyzed the PUFF–UAF model, an ash dispersion model based on the Lagrangian approach, and observed that the number of particles used in tracking substantially affected the results. Even with the presence of millions of particles, the concentration of ash predicted by the PUFF–UAF model does not accurately represent the dispersion. To overcome this deficit and utilize the computational efficiency of the Lagrangian model, we developed a PUFF–Gaussian model to consider the dispersive nature of ash by applying the Gaussian dispersion theory to the results of the PUFF–UAF model. The results of the proposed method were compared with the field measurements from actual volcanic eruptions, and the comparison showed that the proposed method can produce reasonably accurate predictions for ash dispersion.


2019 ◽  
Author(s):  
Sean D. Egan ◽  
Martin Stuefer ◽  
Peter W. Webley ◽  
Taryn Lopez ◽  
Catherine F. Cahill ◽  
...  

Abstract. Volcanic eruptions eject ash and gases into the atmosphere that can contribute to significant hazards to aviation, public and environment health, and the economy. Several volcanic ash transport and dispersion (VATD) models are in use to simulate volcanic ash transport operationally, but none include a treatment of volcanic ash aggregation processes. Volcanic ash aggregation can greatly reduce the atmospheric budget, dispersion and lifetime of ash particles and therefore its impacts. To enhance our understanding and modeling capabilities of the ash aggregation process, a volcanic ash aggregation scheme was integrated into the Weather Research Forecasting with online Chemistry (WRF-Chem) model. Aggregation rates and ash mass loss in this modified code are calculated in-line with the meteorological conditions, providing a fully coupled treatment of aggregation processes. The updated-model results were compared to field measurements of tephra fallout and in situ airborne measurements of ash particles from the April/May 2010 eruptions of Eyjafjallajökull Volcano, Iceland. WRF-Chem, coupled with the newly added aggregation code, modeled ash clouds that agreed spatially and temporally with these in situ and field measurements. A sensitivity study provided insights into the mechanics of the aggregation code by analyzing each aggregation process (collision kernel) independently, as well as by varying the fractal dimension of the newly formed aggregates. In addition, the airborne lifetime (e-folding) of total domain ash mass was analyzed for a range of fractal dimension, and a maximum reduction of 79.5 % of the airborne ash lifetime was noted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eduardo Rossi ◽  
Gholamhossein Bagheri ◽  
Frances Beckett ◽  
Costanza Bonadonna

AbstractA large amount of volcanic ash produced during explosive volcanic eruptions has been found to sediment as aggregates of various types that typically reduce the associated residence time in the atmosphere (i.e., premature sedimentation). Nonetheless, speculations exist in the literature that aggregation has the potential to also delay particle sedimentation (rafting effect) even though it has been considered unlikely so far. Here, we present the first theoretical description of rafting that demonstrates how delayed sedimentation may not only occur but is probably more common than previously thought. The fate of volcanic ash is here quantified for all kind of observed aggregates. As an application to the case study of the 2010 eruption of Eyjafjallajökull volcano (Iceland), we also show how rafting can theoretically increase the travel distances of particles between 138–710 μm. These findings have fundamental implications for hazard assessment of volcanic ash dispersal as well as for weather modeling.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


2019 ◽  
Vol 11 (11) ◽  
pp. 3072 ◽  
Author(s):  
Dian Fiantis ◽  
Frisa Ginting ◽  
Gusnidar ◽  
M. Nelson ◽  
Budiman Minasny

Volcanic eruptions affect land and humans globally. When a volcano erupts, tons of volcanic ash materials are ejected to the atmosphere and deposited on land. The hazard posed by volcanic ash is not limited to the area in proximity to the volcano, but can also affect a vast area. Ashes ejected from volcano’s affect people’s daily life and disrupts agricultural activities and damages crops. However, the positive outcome of this natural event is that it secures fertile soil for the future. This paper examines volcanic ash (tephra) from a soil security view-point, mainly its capability. This paper reviews the positive aspects of volcanic ash, which has a high capability to supply nutrients to plant, and can also sequester a large amount of carbon out of the atmosphere. We report some studies around the world, which evaluated soil organic carbon (SOC) accumulation since volcanic eruptions. The mechanisms of SOC protection in volcanic ash soil include organo-metallic complexes, chemical protection, and physical protection. Two case studies of volcanic ash from Mt. Talang and Sinabung in Sumatra, Indonesia showed the rapid accumulation of SOC through lichens and vascular plants. Volcanic ash plays an important role in the global carbon cycle and ensures soil security in volcanic regions of the world in terms of boosting its capability. However, there is also a human dimension, which does not go well with volcanic ash. Volcanic ash can severely destroy agricultural areas and farmers’ livelihoods. Connectivity and codification needs to ensure farming in the area to take into account of risk and build appropriate adaptation and resilient strategy.


Author(s):  
Emmanuel Skoufias ◽  
Eric Strobl ◽  
Thomas Tveit

AbstractThis article demonstrates the construction of earthquake and volcano damage indices using publicly available remote sensing sources and data on the physical characteristics of events. For earthquakes we use peak ground motion maps in conjunction with building type fragility curves to construct a local damage indicator. For volcanoes we employ volcanic ash data as a proxy for local damages. Both indices are then spatially aggregated by taking local economic exposure into account by assessing nightlight intensity derived from satellite images. We demonstrate the use of these indices with a case study of Indonesia, a country frequently exposed to earthquakes and volcanic eruptions. The results show that the indices capture the areas with the highest damage, and we provide overviews of the modeled aggregated damage for all provinces and districts in Indonesia for the time period 2004 to 2014. The indices were constructed using a combination of software programs—ArcGIS/Python, Matlab, and Stata. We also outline what potential freeware alternatives exist. Finally, for each index we highlight the assumptions and limitations that a potential practitioner needs to be aware of.


2016 ◽  
Vol 9 (2) ◽  
pp. 765-777 ◽  
Author(s):  
Bernd Heinold ◽  
Ina Tegen ◽  
Kerstin Schepanski ◽  
Jamie R. Banks

Abstract. In the aerosol–climate model ECHAM6-HAM2, dust source activation (DSA) observations from Meteosat Second Generation (MSG) satellite are proposed to replace the original source area parameterization over the Sahara Desert. The new setup is tested in nudged simulations for the period 2007 to 2008. The evaluation is based on comparisons to dust emission events inferred from MSG dust index imagery, Aerosol Robotic Network (AERONET) sun photometer observations, and satellite retrievals of aerosol optical thickness (AOT).The model results agree well with AERONET measurements especially in terms of seasonal variability, and a good spatial correlation was found between model results and MSG-SEVIRI (Spinning-Enhanced Visible and InfraRed Imager) dust AOT as well as Multi-angle Imaging SpectroRadiometer (MISR) AOT. ECHAM6-HAM2 computes a more realistic geographical distribution and up to 20 % higher annual Saharan dust emissions, using the MSG-based source map. The representation of dust AOT is partly improved in the southern Sahara and Sahel. In addition, the spatial variability is increased towards a better agreement with observations depending on the season. Thus, using the MSG DSA map can help to circumvent the issue of uncertain soil input parameters.An important issue remains the need to improve the model representation of moist convection and stable nighttime conditions. Compared to sub-daily DSA information from MSG-SEVIRI and results from a regional model, ECHAM6-HAM2 notably underestimates the important fraction of morning dust events by the breakdown of the nocturnal low-level jet, while a major contribution is from afternoon-to-evening emissions.


1988 ◽  
Vol 30 (3) ◽  
pp. 315-330 ◽  
Author(s):  
Julie M. Palais ◽  
Philip R. Kyle

The chemical composition of ice containing tephra (volcanic ash) layers in 22 sections of the Byrd Station ice core was examined to determine if the volcanic eruptions affected the chemical composition of the atmosphere and precipitation in the vicinity of Byrd Station. The liquid conductivity, acidity, sulfate, nitrate, aluminum, and sodium concentrations of ice samples deposited before, during, and after the deposition of the tephra layers were analyzed. Ice samples that contain tephra layers have, on average, about two times more sulfate and three to four times more aluminum than nonvolcanic ice samples. The acidity of ice samples associated with tephra layers is lowered by hydrolysis of silicate glass and minerals. Average nitrate, sodium, and conductivity are the same in all samples. Because much of the sulfur and chlorine originally associated with these eruptions may have been scavenged by ash particles, the atmospheric residence time of these volatiles would have been minimized. Therefore the eruptions probably had only a small effect on the composition of the Antarctic atmosphere and a negligible effect on local or global climate.


2016 ◽  
Vol 144 (2) ◽  
pp. 575-589 ◽  
Author(s):  
S. Lu ◽  
H. X. Lin ◽  
A. W. Heemink ◽  
G. Fu ◽  
A. J. Segers

Abstract Volcanic ash forecasting is a crucial tool in hazard assessment and operational volcano monitoring. Emission parameters such as plume height, total emission mass, and vertical distribution of the emission plume rate are essential and important in the implementation of volcanic ash models. Therefore, estimation of emission parameters using available observations through data assimilation could help to increase the accuracy of forecasts and provide reliable advisory information. This paper focuses on the use of satellite total-ash-column data in 4D-Var based assimilations. Experiments show that it is very difficult to estimate the vertical distribution of effective volcanic ash injection rates from satellite-observed ash columns using a standard 4D-Var assimilation approach. This paper addresses the ill-posed nature of the assimilation problem from the perspective of a spurious relationship. To reduce the influence of a spurious relationship created by a radiate observation operator, an adjoint-free trajectory-based 4D-Var assimilation method is proposed, which is more accurate to estimate the vertical profile of volcanic ash from volcanic eruptions. The method seeks the optimal vertical distribution of emission rates of a reformulated cost function that computes the total difference between simulated and observed ash columns. A 3D simplified aerosol transport model and synthetic satellite observations are used to compare the results of both the standard method and the new method.


Sign in / Sign up

Export Citation Format

Share Document