scholarly journals Declines and Resilience of Communities of Leaf Chewing Insects on Missouri Oaks Following Spring Frost and Summer Drought

Author(s):  
Robert J. Marquis ◽  
John T. Lill ◽  
Rebecca E. Forkner ◽  
Josiane Le Corff ◽  
John M. Landosky ◽  
...  
2019 ◽  
Vol 278 ◽  
pp. 107695 ◽  
Author(s):  
Antonio Gazol ◽  
J. Julio Camarero ◽  
Michele Colangelo ◽  
Martín de Luis ◽  
Edurne Martínez del Castillo ◽  
...  

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1039D-1040
Author(s):  
Sheri B. Crabtree ◽  
Kirk W. Pomper ◽  
Desmond R. Layne ◽  
R. Neal Peterson

The pawpaw [Asimina triloba (L.) Dunal] is a tree fruit native to the eastern United States with potential as an alternative crop for small farmers. The Pawpaw Regional Variety Trial (PRVT) was established in 1993 by Kentucky State University (KSU) and the PawPaw Foundation (PPF) and includes 28 cultivars and advanced selections planted at 12 sites. The PRVT was established at the KSU Research Farm in Frankfort, Ky., in 1998. Data has been collected on the KSU-PRVT annually since its inception. The first fruit were produced in 1999, with Middletown, Mitchell, Overleese, and Sunflower being the most precocious varieties. A frost occurred in early April 2000, decimating the crop, with only eight fruit being produced across the orchard. In 2001, 12% of the trees produced fruit, with PA-Golden having the best early production. In 2002, 68% of trees in the PRVT fruited, producing a total of 3,500 fruit. Selections with the largest fruit (over 200 g) were Susquehanna, 5-5, 4-2, and 1-7-2. In 2003, a spring frost destroyed most of the flowers and developing fruit. Only 32 out of the 224 trees in the PRVT retained fruit, a total of only 131 fruit in the entire orchard. In 2004, the PRVT produced about 25,000 fruit across the entire orchard. Selections 4-2 and 7-90 produced the largest fruit, over 200 g. Shenandoah, 10-35, and 8-20 were the highest-yielding clones, all producing over 15 kg of fruit per tree. In 2005, spring frosts and a severe summer drought diminished fruit set and retention in the PRVT, with the orchard producing 8,900 fruit. Selections 4-2, 5-5, and Susquehanna produced the largest fruit, all weighing over 200 g. The highest yielding selections were 10-35, PA-Golden, and 1-7-2, all producing over 8 kg of fruit per tree.


2019 ◽  
Author(s):  
Ettore D’Andrea ◽  
Negar Rezaie ◽  
Peter Prislan ◽  
Jozica Gričar ◽  
Jan Muhr ◽  
...  

SummaryThe effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions.Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for three years (2015–2017), including a late frost (2016) and a summer drought (2017).The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux.The studied extreme weather events had various effects on tree growth. Even though late spring frost had a devastating impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.


Author(s):  
R.W. Hofmann ◽  
B.D. Campbell ◽  
E.E. Swinny ◽  
S.J. Bloor ◽  
K.R. Markham ◽  
...  

During summertime in New Zealand, white clover experiences high levels of ultraviolet-B (UV-B) radiation. This frequently coincides with periods of summer drought. We investigated responses to UV-B and to the combination of UV-B and drought in various white clover populations, including New Zealand cultivars and ecotypes as well as overseas germplasm. The results were obtained under controlled environmental conditions in three independent trials. Overall, white clover growth was reduced by UV-B. The population comparisons indicated that low growth rate and adaptation to other forms of stress may be related to UV-B tolerance under well-watered conditions, but not during extended periods of drought. Flavonoid pigments that are involved in stress protection were strongly increased under UV-B and were further enhanced in the combination of UV-B and drought. The responses among these flavonoids were highly specific, with more pronounced UV-B-induced increases in quercetin glycosides, compared to their closely related kaempferol counterparts. UV-B toler ance of the less productive white clover populations was linked to the accumulation of quercetin compounds. In conclusion, these studies suggest (i) that slow-growing white clover ecotypes adapted to other stresses have higher capacity for biochemical acclimation to UV-B under well-watered conditions and (ii) that these biochemical attributes may also contribute to decreased UV-B sensitivity across white clover populations under drought. The findings alert plant breeders to potential benefits of selecting productive germplasm for high levels of specific flavonoids to balance trade-offs between plant productivity and stress tolerance. Keywords: Drought, flavonoids, genetic variation, HPLC, kaempferol, quercetin, str ess, Trifolium repens L., ultraviolet-B, white clover


2021 ◽  
Vol 13 (6) ◽  
pp. 1177
Author(s):  
Peijuan Wang ◽  
Yuping Ma ◽  
Junxian Tang ◽  
Dingrong Wu ◽  
Hui Chen ◽  
...  

Tea (Camellia sinensis) is one of the most dominant economic plants in China and plays an important role in agricultural economic benefits. Spring tea is the most popular drink due to Chinese drinking habits. Although the global temperature is generally warming, spring frost damage (SFD) to tea plants still occurs from time to time, and severely restricts the production and quality of spring tea. Therefore, monitoring and evaluating the impact of SFD to tea plants in a timely and precise manner is a significant and urgent task for scientists and tea producers in China. The region designated as the Middle and Lower Reaches of the Yangtze River (MLRYR) in China is a major tea plantation area producing small tea leaves and low shrubs. This region was selected to study SFD to tea plants using meteorological observations and remotely sensed products. Comparative analysis between minimum air temperature (Tmin) and two MODIS nighttime land surface temperature (LST) products at six pixel-window scales was used to determine the best suitable product and spatial scale. Results showed that the LST nighttime product derived from MYD11A1 data at the 3 × 3 pixel window resolution was the best proxy for daily minimum air temperature. A Tmin estimation model was established using this dataset and digital elevation model (DEM) data, employing the standard lapse rate of air temperature with elevation. Model validation with 145,210 ground-based Tmin observations showed that the accuracy of estimated Tmin was acceptable with a relatively high coefficient of determination (R2 = 0.841), low root mean square error (RMSE = 2.15 °C) and mean absolute error (MAE = 1.66 °C), and reasonable normalized RMSE (NRMSE = 25.4%) and Nash–Sutcliffe model efficiency (EF = 0.12), with significantly improved consistency of LST and Tmin estimation. Based on the Tmin estimation model, three major cooling episodes recorded in the "Yearbook of Meteorological Disasters in China" in spring 2006 were accurately identified, and several highlighted regions in the first two cooling episodes were also precisely captured. This study confirmed that estimating Tmin based on MYD11A1 nighttime products and DEM is a useful method for monitoring and evaluating SFD to tea plants in the MLRYR. Furthermore, this method precisely identified the spatial characteristics and distribution of SFD and will therefore be helpful for taking effective preventative measures to mitigate the economic losses resulting from frost damage.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 671
Author(s):  
Ioannis Charalampopoulos

The Balkan peninsula is a transitional zone, in terms of bioclimatic conditions, with an extended and dynamic agricultural sector. Its potential is in peril due to climate change and socioeconomic factors. To assess and evaluate the agrometeorological conditions and the related trends which affect the widely cultivated wheat and maize, a big dataset with high spatiotemporal analysis was utilized. The thermal indices of Growing Degree Days (GDD) and Heat Stress Index (HSI) along with the main frost parameters (frost days, last spring frost, first autumn frost, and free of frost days) were calculated over ten countries for 42 years on a daily basis over a grid of 25 × 25 km. The results indicate a clear cultivations’ expansion ability to northern areas, and higher altitudes and an increased risk of heat caused plants’ injuries. The thermal indices’ trends for maize and wheat cultivation are always positive (Maize: GDD 7.26–11.05 units/yr, HSI 0.52–3.51 units/yr Wheat: GDD 7.2–12.7 units/yr, HSI 0.22–1.77 units/yr). The free of frost (FFD) season is getting longer (trend −0.04 to 0.34 d/yr) because of earlier last spring frost and delayed first autumn frost. The results consist of spatial and temporal illustrations, along with summary statistics and probability density plots for the entire study area and per country.


2021 ◽  
Author(s):  
Jorge Luis Montero-Muñoz ◽  
Carmen Ureña ◽  
Diego Navarro ◽  
Valentín Herrera ◽  
Pilar Alonso-Rojo ◽  
...  

Abstract Aims We studied the regeneration dynamics of woodlands and abandoned old fields in a landscape dominated by Quercus suber in its lower limits of rainfall and temperature. Two hypotheses were established: (1) regeneration of Quercus species is strongly favored by the presence of tree cover; and (2) growth of Q. suber is driven by the climatic variables that represent the lower ecological limit of its leading distribution edge. Methods We selected woodlands and old fields with and without tree remnants (n = 3 per type), and analyzed stand structure, soil parameters and tree growth. Results Succession was arrested in old fields without tree remnants. By contrast, remnant trees were accelerators of forest recovery in old fields. Tree cover played a fundamental role in Quercus recruitment throughout seed dispersal and facilitation that mitigate the effects of summer drought on seedlings. Also, tree cover improved soil parameters (e.g., organic matter) that are important factors for understanding differences in regeneration. Winter/spring precipitation exerted a positive effect on tree growth, as well as temperatures during winter/spring and September. Conclusions Regeneration dynamics are modeled by the density of tree cover in the cold and dry edge of the distribution area of Q. suber where Q. ilex is increasing in abundance. Although temperature has a positive effect on the tree growth of Q. suber, when demographic processes are considered, decreases in water availability likely play a critical role in Q. ilex recruitment. This in turn changes dominance hierarchies, especially in abandoned areas with little or no tree cover.


Sign in / Sign up

Export Citation Format

Share Document