scholarly journals Identification and Validation of Potential Pathogenic Genes and Prognostic Markers in ESCC by Integrated Bioinformatics Analysis

2020 ◽  
Vol 11 ◽  
Author(s):  
Lu Tang ◽  
Yuqiao Chen ◽  
Xiong Peng ◽  
Yuan Zhou ◽  
Hong Jiang ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal malignancies of the digestive tract, but its underlying molecular mechanisms are not known. We aim to identify the genes involved in ESCC carcinogenesis and discover potential prognostic markers using integrated bioinformatics analysis. Three pairs of ESCC tissues and paired normal tissues were sequenced by high-throughput RNA sequencing (RNA-seq). Integrated bioinformatics analysis was used to identify differentially expressed coding genes (DECGs) and differentially expressed long non-coding RNA (lncRNA) genes (DELGs). A protein–protein interaction (PPI) network of DECGs was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website and visualized with Cytoscape. Survival analysis was conducted by log-rank tests to identify “hub” genes with potential prognostic value, and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted to assess expression of these genes in ESCC tissues. TranswellTM assays were employed to examine the migration ability of cells after knockdown of LINC01614 expression, followed by investigation of epithelial–mesenchymal transition (EMT) by western blotting (WB). A total of 106 upregulated genes and 42 downregulated genes were screened out from the ESCC data sets. Survival analysis showed two hub protein-coding genes with higher expression in module 1 of the PPI network (SPP1 and BGN) and another three upregulated lncRNAs (LINC01614, LINC01415, NKILA) that were associated with a poor prognosis. High expression of SPP1, BGN, LINC01614, and LINC01415 in tumor samples was validated further by RT-qPCR. In vitro experiments show that knockdown of LINC01614 expression could significantly inhibit the migration of ESCC cells by regulating EMT, which was confirmed by WB. These results indicate that BGN, SPP1, LINC01614, and LINC01415 might be critical genes in ESCC and potential prognostic biomarkers.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Peng Li Zhou ◽  
Zhengyang Wu ◽  
Wenguang Zhang ◽  
Miao Xu ◽  
Jianzhuang Ren ◽  
...  

AbstractGrowing evidence has indicated that circular RNAs (circRNAs) play a pivotal role as functional RNAs in diverse cancers. However, most circRNAs involved in esophageal squamous cell carcinoma (ESCC) remain undefined, and the underlying molecular mechanisms mediated by circRNAs are largely unclear. Here, we screened human circRNA expression profiles in ESCC tissues and found significantly increased expression of hsa_circ_0000277 (termed circPDE3B) in ESCC tissues and cell lines compared to the normal controls. Moreover, higher circPDE3B expression in patients with ESCC was correlated with advanced tumor-node-metastasis (TNM) stage and dismal prognosis. Functional experiments demonstrated that circPDE3B promoted the tumorigenesis and metastasis of ESCC cells in vitro and in vivo. Mechanistically, bioinformatics analysis, a dual-luciferase reporter assay, and anti-AGO2 RNA immunoprecipitation showed that circPDE3B could act as a competing endogenous RNA (ceRNA) by harboring miR-4766-5p to eliminate the inhibitory effect on the target gene laminin α1 (LAMA1). In addition, LAMA1 was significantly upregulated in ESCC tissues and was positively associated with the aggressive oncogenic phenotype. More importantly, rescue experiments revealed that the oncogenic role of circPDE3B in ESCC is partly dependent on the miR-4766-5p/LAMA1 axis. Furthermore, bioinformatics analysis combined with validation experiments showed that epithelial-mesenchymal transition (EMT) activation was involved in the oncogenic functions of the circPDE3B–miR-4766-5p/LAMA1 axis in ESCC. Taken together, we demonstrate for the first time that the circPDE3B/miR-4766-5p/LAMA1 axis functions as an oncogenic factor in promoting ESCC cell proliferation, migration, and invasion by inducing EMT, implying its potential prognostic and therapeutic significance in ESCC.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Bo Tang ◽  
Yue Xi ◽  
Fengmei Cui ◽  
Jin Gao ◽  
Huiqin Chen ◽  
...  

Abstract Objective: The present study aimed to analyze the mechanism by which long-term occupational exposure of workers to low-dose ionizing irradiation induces epithelial–mesenchymal transition (EMT) of the human bronchial epithelial cells using transcriptome profiling. Methods: RNA-seq transcriptomics was used to determine gene expression in blood samples from radiation-exposed workers followed by bioinformatics analysis. Normal bronchial epithelial cells (16HBE) were irradiated for different durations and subjected to immunofluorescence, Western blotting, scratch healing, and adhesion assays to detect the progression of EMT and its underlying molecular mechanisms. Results: Transcriptomics revealed that exposure to ionizing radiation led to changes in the expression of genes related to EMT, immune response, and migration. At increased cumulative doses, ionizing radiation-induced significant EMT, as evidenced by a gradual decrease in the expression of E-cadherin, increased vimentin, elevated migration ability, and decreased adhesion capability of 16HBE cells. The expression of fibronectin 1 (FN1) showed a gradual increase with the progression of EMT, and may be involved in EMT. Conclusion: Ionizing radiation induces EMT. FN1 may be involved in the progression of EMT and could serve as a potential biomarker for this process.


2020 ◽  
Author(s):  
Yanzhi Ge ◽  
Li Zhou ◽  
Zuxiang Chen ◽  
Yingying Mao ◽  
Ting Li ◽  
...  

Abstract Background: The disability rate associated with rheumatoid arthritis (RA) ranks high among inflammatory joint diseases. However, the cause and potential molecular events are as yet not clear. Here, we aimed to identify differentially expressed genes (DEGs), pathways and immune infiltration involved in RA utilizing integrated bioinformatics analysis and investigating potential molecular mechanisms. Materials and methods: The expression profiles of GSE55235, GSE55457, GSE55584 and GSE77298 were downloaded from the Gene Expression Omnibus database, which contained 76 synovial membrane samples, including 49 RA samples and 27 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using R (version 3.6.1) software, respectively. The protein-protein interaction (PPI) network of DEGs were developed utilizing the STRING database. Finally, the CIBERSORT was used to evaluate the infiltration of immune cells in RA. Results: A total of 828 DEGs were recognized, with 758 up-regulated and 70 down-regulated. GO and KEGG pathway analyses demonstrated that these DEGs focused primarily on cytokine receptor activity and relevant signaling pathways. The 30 most firmly related genes among DEGs were identified from the PPI network. The principal component analysis showed that there was a significant difference between the two tissues in infiltration immune. Conclusion: This study shows that screening for DEGs, pathways and immune infiltration utilizing integrated bioinformatics analyses could aid in the comprehension of the molecular mechanisms involved in RA development. Besides, our study provides valuable data related to DEGs, pathways and immune infiltration of RA and may provide new insight into the understanding of molecular mechanisms.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Li-Na Gao ◽  
Man Hao ◽  
Xiao-Hui Liu ◽  
Li Zhang ◽  
Yan Dong ◽  
...  

Abstract Background There is an urgent need to identify potential targets in anticancer therapy to improve the survival and prognosis of patients with ovarian cancer (OC). Herein, we investigated the functional significance of chemokine (C-X-C motif) ligand 14 (CXCL14) in OC cell growth and epithelial–mesenchymal transition (EMT). Methods qRT PCR and western blotting was used to detect CXCL14 mRNA level and protein expression, respectively. The functional mechanism of CXCL14 in OC was investigated by CCK-8, colony formation and transwell assays. The migration ability of OC cell was determined using wound healing. The protein expressions of CXCL14 and β-catenin in OC tissues were determined by immumohistochemical staining. Results We demonstrated that high levels of CXCL14 were associated with a worse prognosis in patients with OC. CXCL14 knockdown considerably restrained the growth, migration and invasion of OC cell in vitro. In contrast, ectopic CXCL14 overexpression yielded the opposite results. Investigations to determine the underlying molecular mechanisms revealed that the Wnt/β-catenin signaling pathway is involved in CXCL14-facilitated OC cell invasiveness. Conclusion These data collectively demonstrate that CXCL14 contributes to OC cell growth and metastatic potential by regulating the Wnt/β-catenin signaling pathway.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Shumei Tang ◽  
Xiangcheng Xiao

Abstract Background and Aims Diabetes has considerable negative impact on morbidity and mortality and causes huge social and economic burden. As one of the most serious microvascular complication of diabetes, diabetic nephropathy (DN) leads to a large population of end-stage renal disease in many countries. The pathogenesis of DN is always a hot topic and the underlying molecular events are not completely clear. Tubular injury plays an important role and may be the initial event. Although few therapeutic treatments could postpone the onset and development, the morbidity of DN remains high. More available therapeutic treatments are urgently needed as well as early stage diagnostic markers and more credible prognostic molecular markers. As a wide range application of high-throughput omics technology, various public network database platforms have included extensive transcriptomics data for deeper bioinformatics analysis. Integrating these data provides better understandings of molecular functions and biological processes. We performed integrated bioinformatics to recognize differentially expressed genes and discussed potential molecular mechanisms in DN. Method The expression profiles of GSE30529, GSE47184, GSE99325 and GSE104954 were downloaded from the Gene Expression Omnibus database. The four microarray datasets were centralized, integrated and performed a difference analysis. Next, differentially expressed genes (DEGs) were deeply analyzed by gene ontology annotation and enrichment analysis. STRING database was used to conducted a PPI network and Molecular Complex Detection (MCODE) software was used to identify central genes. Results The four files contain 63 tubular biopsy samples from patients with DN and 41 control tubule samples. We identified 18 target DEGs, C3, PROM1, LUM, CPA3, SERPINA3, ANXA1, CX3CR1, AGR2, CD48, REG1A, RARRES1, CYP24A1, C1R, CFB, CDH6, PVALB, GADD45B and KLK1. GO analysis indicated that biological processes of DEGs concentrate on proteolysis, inflammatory response, complement activation and regulation of complement activation. Main cellular components include extracellular exosome, extracellular region, extracellular space, blood microparticle, protein complex and plasma membrane. Molecular functions include calcium ion binding and serine-type endopeptidase activity. DEGs were found that maybe mainly involved in staphylococcus aureus infection, renin-angiotensin system, and complement and coagulation cascades by KEGG pathway analysis. The PPI network of DEGs were established by STRING database and one significant modules were identified by MCODE software. In addition, 3 hub genes, C3, CX3CR1 and ANXA1, were discerned from the PPI network. Conclusion To better clarify the underlying molecular mechanisms and provide more effective targets, this study screened DEGs and pathways in DN using bioinformatics analyses.


Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yanzhi Ge ◽  
Li Zhou ◽  
Zuxiang Chen ◽  
Yingying Mao ◽  
Ting Li ◽  
...  

Abstract Background The disability rate associated with rheumatoid arthritis (RA) ranks high among inflammatory joint diseases. However, the cause and potential molecular events are as yet not clear. Here, we aimed to identify differentially expressed genes (DEGs), pathways and immune infiltration involved in RA utilizing integrated bioinformatics analysis and investigating potential molecular mechanisms. Materials and methods The expression profiles of GSE55235, GSE55457, GSE55584 and GSE77298 were downloaded from the Gene Expression Omnibus database, which contained 76 synovial membrane samples, including 49 RA samples and 27 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using R (version 3.6.1) software, respectively. The protein-protein interaction (PPI) network of DEGs were developed utilizing the STRING database. Finally, the CIBERSORT was used to evaluate the infiltration of immune cells in RA. Results A total of 828 DEGs were recognized, with 758 up-regulated and 70 down-regulated. GO and KEGG pathway analyses demonstrated that these DEGs focused primarily on cytokine receptor activity and relevant signaling pathways. The 30 most firmly related genes among DEGs were identified from the PPI network. The principal component analysis showed that there was a significant difference between the two tissues in infiltration immune. Conclusion This study shows that screening for DEGs, pathways and immune infiltration utilizing integrated bioinformatics analyses could aid in the comprehension of the molecular mechanisms involved in RA development. Besides, our study provides valuable data related to DEGs, pathways and immune infiltration of RA and may provide new insight into the understanding of molecular mechanisms.


2019 ◽  
Vol 12 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Lisha Xie ◽  
Tao Jiang ◽  
Ailan Cheng ◽  
Ting Zhang ◽  
Pin Huang ◽  
...  

Background: Alterations in microRNAs (miRNAs) are related to the occurrence of nasopharyngeal carcinoma (NPC) and play an important role in the molecular mechanism of NPC. Our previous studies show low expression of 14-3-3σ (SFN) is related to the metastasis and differentiation of NPC, but the underlying molecular mechanisms remain unclear. Methods: Through bioinformatics analysis, we find miR-597 is the preferred target miRNA of 14-3-3σ. The expression level of 14-3-3σ in NPC cell lines was detected by Western blotting. The expression of miR-597 in NPC cell lines was detected by qRT-PCR. We transfected miR-597 mimic, miR-597 inhibitor and 14-3-3σ siRNA into 6-10B cells and then verified the expression of 14-3-3σ and EMT related proteins, including E-cadherin, N-cadherin and Vimentin by western blotting. The changes of migration and invasion ability of NPC cell lines before and after transfected were determined by wound healing assay and Transwell assay. Results: miR-597 expression was upregulated in NPC cell lines and repaired in related NPC cell lines, which exhibit a potent tumor-forming effect. After inhibiting the miR-597 expression, its effect on NPC cell line was obviously decreased. Moreover, 14-3-3σ acts as a tumor suppressor gene and its expression in NPC cell lines is negatively correlated with miR-597. Here 14-3-3σ was identified as a downstream target gene of miR-597, and its downregulation by miR-597 drives epithelial-mesenchymal transition (EMT) and promotes the migration and invasion of NPC. Conclusion: Based on these findings, our study will provide theoretical and experimental evidences for molecular targeted therapy of NPC.


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 79-92 ◽  
Author(s):  
Min An ◽  
Dong Li ◽  
Ming Yuan ◽  
Qiuju Li ◽  
Lu Zhang ◽  
...  

Endometrial cells and microenvironment are two important factors in the pathogenesis of adenomyosis. Our previous study demonstrated that macrophages can induce eutopic epithelial cells of adenomyosis to suffer from epithelial–mesenchymal transition (EMT). The aim of this study is to detect whether macrophages interacting with epithelial cells equally induce the EMT process in normal and eutopic endometria of healthy and adenomyotic patients; and whether macrophages parallelly polarize to M2. We investigated the expression levels of epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), cytokeratin7 (CK7), vimentin, transforming growth factor-β1 (TGFB1), SMAD3 and pSMAD3 using immunohistochemistry and western blot, and then estimated the genetic levels of CD163, IL10 and MMP12 using real-time quantitative polymerase chain reaction (RT-PCR) in macrophages. Eutopic and normal endometrial tissues were obtained from 20 patients with adenomyosis and 11 control patients without adenomyosis, respectively. The immunohistochemical analysis shows distinct EMT in eutopic endometria in secretory phase; the expression levels of TGFB1, SMAD3 and pSMAD3 that indicate signal pathway of EMT were also higher in secretory phase. Macrophages can induce EMT process in primary endometrial epithelial cells derived from normal and eutopic endometria. After co-culturing, THP-1-derived macrophages polarized to M2. Compared with the eutopic endometrium group, further polarization to M2 was observed in the normal endometrium group. These results indicate that adenomyosis may be promoted by the pathologic EMT of epithelial cells, which is induced by macrophages that incapably polarize to M2.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1074
Author(s):  
Giuseppina Divisato ◽  
Silvia Piscitelli ◽  
Mariantonietta Elia ◽  
Emanuela Cascone ◽  
Silvia Parisi

Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial–mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial–mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.


Sign in / Sign up

Export Citation Format

Share Document