scholarly journals Identification and Characterization of circRNA in Longissimus Dorsi of Different Breeds of Cattle

2020 ◽  
Vol 11 ◽  
Author(s):  
Ruili Liu ◽  
Xianxun Liu ◽  
Xuejin Bai ◽  
Chaozhu Xiao ◽  
Yajuan Dong

Shandong black cattle is a new breed of cattle that is developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of cattle (Shandong black and Luxi). We identified 14,640 circRNAs and found 655 differentially expressed circRNAs. We also analyzed the classification and characteristics of circRNAs in muscle tissue. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fiber development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK, and mTOR signaling pathways. In addition, we used miRanda to predict the interactions between 14 circRNAs and 11 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003424, circ0003721, circ0003720, circ0001519, circ0001530, circ0005011, circ0014518, circ0000181, circ0000190, circ0010558) that may play important roles in the regulation of muscle growth and development. Using real-time quantitative PCR, 14 circRNAs were randomly selected to verify the real circRNAs. Luciferase reporter gene system was used to verify the binding site of miR-1 in circ0014518. Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.

2020 ◽  
Author(s):  
Ruili Liu ◽  
Xianxun Liu ◽  
Xuejin Bai ◽  
Chaozhu Xiao ◽  
Yajuan Dong

Abstract Background Black cattle are a new breed of cattle that are developed by applying modern biotechnology, such as somatic cloning, and conventional breeding methods to Luxi cattle. It is very important to study the function and regulatory mechanism of circRNAs in muscle differentiation among different breeds to improve meat quality and meat production performance and to provide new ideas for beef cattle meat quality improvements and new breed development. Therefore, the goal of this study was to sequence and identify circRNAs in muscle tissues of different breeds of cattle. We used RNA-seq to identify circRNAs in the muscles of two breeds of black cattle (Black and Luxi). Results We identified 14640 circRNAs and found 655 differentially expressed circRNAs. We also analysed the classification and characteristics of circRNAs in muscle tissue. GO and KEGG analyses were used on the parental genes of circRNAs. They were mainly involved in a variety of biological processes, such as muscle fibre development, smooth muscle cell proliferation, bone system morphogenesis, tight junctions and the MAPK, AMPK and mTOR signalling pathways. In addition, we used miRanda to predict the interactions between 15 circRNAs and 12 miRNAs. Based on the above assays, we identified circRNAs (circ0001048, circ0001103, circ0001159, circ0003719, circ0003794, circ0003721, circ0003720, circ0001519, circ0001530, circ0005060, circ0006589, circ0000181, circ0000190, circ0010558, circ0010577) that may play an important role in the regulation of muscle growth and development. Conclusion Our results provide more information about circRNAs regulating muscle development in different breeds of cattle and lay a solid foundation for future experiments.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 360 ◽  
Author(s):  
Wang ◽  
Zhang ◽  
Li ◽  
Abdalla ◽  
Chen ◽  
...  

As key post-transcriptional regulators, microRNAs (miRNAs) play an indispensable role in skeletal muscle development. Our previous study suggested that miR-34b-5p and IGFBP2 could have a potential role in skeletal muscle growth. Our goal in this study is to explore the function and regulatory mechanism of miR-34b-5p and IGFBP2 in myogenesis. In this study, the dual-luciferase reporter assay and Western blot analysis showed that IGFBP2 is a direct target of miR-34b-5p. Flow cytometric analysis and EdU assay showed that miR-34b-5p could repress the cell cycle progression of myoblasts, and miR-34b-5p could promote the formation of myotubes by promoting the expression of MyHC. On the contrary, the overexpression of IGFBP2 significantly facilitated the proliferation of myoblasts and hampered the formation of myotubes. Together, our results indicate that miR-34b-5p could mediate the proliferation and differentiation of myoblasts by targeting IGFBP2.


2015 ◽  
Vol 1 (2) ◽  
pp. 139-148
Author(s):  
Md Shahjahan

This review covers the pre- and post-natal development of skeletal muscle of vertebrate animals with cellular and molecular levels. The formation of skeletal muscle initiates from paraxial mesoderm during embryogenesis of individuals which develops somites and subsequently forms dermomyotome derived myotome to give rise axial musculature. This process (myogenesis) includes stem and progenitor cell maintenance, lineage specification, and terminal differentiation to form myofibrils consequent muscle fibers which control muscle mass and its multiplication. The main factors of muscle growth are proliferation and differentiation of myogenic cells in prenatal stage and also the growth of satellite cells at postnatal stage. There is no net increase in the number of muscle fibers in vertebrate animals after hatch or birth except fish. The development of muscle is characterized by hyperplasia and hypertrophy in prenatal and postnatal stages of individuals, respectively, through Wnt signalling pathway including environment, nutrition, sex, feed, growth and myogenic regulatory factors. Therefore further studies could elucidate new growth related genes, markers and factors to enhance meat production and enrich knowledge on muscle growth.Asian J. Med. Biol. Res. June 2015, 1(2): 139-148


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1417
Author(s):  
Chuan Li ◽  
Ting Xiong ◽  
Mingfang Zhou ◽  
Lei Wan ◽  
Suwang Xi ◽  
...  

Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haobin Hou ◽  
Xiaoliang Wang ◽  
Changsuo Yang ◽  
Xia Cai ◽  
Wenwei Lv ◽  
...  

Pigeon breed resources provide a genetic model for the study of phenomics. The pectoral muscles play a key role for the meat production performance of the meat pigeon and the athletic ability of the High flyers. Euro-pigeons and Silver King pigeons are commercial varieties that exhibit good meat production performance. In contrast to the domestication direction of meat pigeons, the traditional Chinese ornamental pigeon breed, High flyers, has a small and light body. Here, we investigate the molecular mechanism of the pectoral muscle development and function of pigeons using whole-genome and RNA sequencing data. The selective sweep analysis (FST and log2 (θπ ratio)) revealed 293 and 403 positive selection genes in Euro-pigeons and Silver King, respectively, of which 65 genes were shared. With the Silver King and Euro-pigeon as the control group, the High flyers were selected for 427 and 566 genes respectively. There were 673 differentially expressed genes in the breast muscle transcriptome between the commercial meat pigeons and ornamental pigeons. Pigeon genome selection signal combined with the breast muscle transcriptome revealed that six genes (SLC16A10, S100B, SYNE1, HECW2, CASQ2 and LOC110363470) from commercial varieties of pigeons and five genes (INSC, CALCB, ZBTB21, B2M and LOC110356506) from Chinese traditional ornamental pigeons were positively selected which were involved in pathways related to muscle development and function. This study provides new insights into the selection of different directions and the genetic mechanism related to muscle development in pigeons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ali H. Nawaz ◽  
Kwaku Amoah ◽  
Qi Y. Leng ◽  
Jia H. Zheng ◽  
Wei L. Zhang ◽  
...  

The continuous increase in poultry production over the last decades to meet the high growing demand and provide food security has attracted much concern due to the recent negative impacts of the most challenging environmental stressor, heat stress (HS), on birds. The poultry industry has responded by adopting different environmental strategies such as the use of environmentally controlled sheds and modern ventilation systems. However, such strategies are not long-term solutions and it cost so much for farmers to practice. The detrimental effects of HS include the reduction in growth, deterioration of meat quality as it reduces water-holding capacity, pH and increases drip loss in meat consequently changing the normal color, taste and texture of chicken meat. HS causes poor meat quality by impairing protein synthesis and augmenting undesirable fat in meat. Studies previously conducted show that HS negatively affects the skeletal muscle growth and development by changing its effects on myogenic regulatory factors, insulin growth factor-1, and heat-shock proteins. The focus of this article is in 3-fold: (1) to identify the mechanism of heat stress that causes meat production and quality loss in chicken; (2) to discuss the physiological, metabolic and genetic changes triggered by HS causing setback to the world poultry industry; (3) to identify the research gaps to be addressed in future studies.


Author(s):  
L. Istasse ◽  
C. Van Eenaeme ◽  
P. Baldwin ◽  
G. Maghuin-Rogister ◽  
J.M. Bienfait

Meat production is a complex process in which the absorbed nutrients are directed under hormonal control towards muscle growth. According to consumer's standards a high quality carcass should contain a large proportion of lean meat and a small amount of fat. In Western Europe, cattle meat is produced both by beef and dairy breeds used as pure breeds or breed crosses. Holstein and Belgian Blue - double muscled type - are 2 extreme breeds in terms of meat production. The aim of the present experiment was to relate animal performances with plasma hormones and metabolites in these 2 breedsSix Holstein bulls and 6 bulls from the Belgian Blue - double muscled type - were used. They were 4 and 6 months old respectively on the beginning of the experiment. They were kept in metabolism stalls. The fattening diet was based on dried sugar beet pulp supplemented with soja bean meal, rolled barley, hay, minerals and vitamins. The amounts of feed given were weighed daily. Live weight was recorded once weekly.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jiyuan Shen ◽  
Zhiyun Hao ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Carcass weight, meat quality and muscle components are important traits economically and they underpin most of the commercial return to goat producers. In this study, the Longissimus dorsi muscle tissues were collected from five Liaoning cashmere (LC) goats and five Ziwuling black (ZB) goats with phenotypic difference in carcass weight, some meat quality traits and muscle components. The histological quantitative of collagen fibers and the transcriptome profiles in the Longissimus dorsi muscle tissues were investigated using Masson-trichrome staining and RNA-Seq, respectively. The percentage of total collagen fibers in the Longissimus dorsi muscle tissues from ZB goats was less than those from LC goats, suggesting that these ZB goats had more tender meat. An average of 15,919 and 15,582 genes were found to be expressed in Longissimus dorsi muscle tissues from LC and ZB goats, respectively. Compared to LC goats, the expression levels of 78 genes were up-regulated in ZB goats, while 133 genes were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in GO terms related to the muscle growth and development and the deposition of intramuscular fat and lipid metabolism, hippo signaling pathway and Jak-STAT signaling pathway. The results provide an improved understanding of the genetic mechanisms regulating meat production performance in goats, and will help us improve the accuracy of selection for meat traits in goats using marker-assisted selection based on these differentially expressed genes obtained.


Author(s):  
Xuling Tan ◽  
Junjian Hu ◽  
Fengyu Ming ◽  
Lingling Lv ◽  
Weiqian Yan ◽  
...  

Precise recognition of early Parkinson’s disease (PD) has always been a challenging task requiring more feasible biomarkers to be integrated to improve diagnostic accuracy. MicroRNAs (miRNAs) of cerebrospinal fluid (CSF) are believed to be potential and promising candidate biomarkers for PD. However, the role of altered miRNAs of CSF play in PD is unclear. Here, we recruited patients with early stages of PD and controls to analyze the expression of miRNA in CSF by the Next Generation Sequencing (NGS). Furthermore, we tested the levels of these miRNA in SH-SY5Y cells treated with MPP+ using real-time quantitative PCR. We found 21 miRNAs were upregulated in CSF of early PD patients and miR-409-3p, one of the identified 21 miRNAs, was further confirmed in SH-SY5Y cells treated with MPP+. Also, more cells survived in the overexpression of the miR-409-3p group when SH-SY5Y cells and mice were treated with MPP+ and MPTP, respectively. Mechanistically, we demonstrated the binding of miR-409-3p and 3’UTR of ATXN3 through a dual luciferase reporter gene assay. Moreover, miR-409-3p mimic reduced the aggregation of polyglutamine-expanded mutant of ATXN3 and apoptosis. Our results provide experimental evidence for miR-409-3p in CSF as a diagnostic marker of PD.


Sign in / Sign up

Export Citation Format

Share Document