scholarly journals Identification and Validation of a Novel Immune-Related Four-lncRNA Signature for Lung Adenocarcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Jixin Wang ◽  
Xiangjun Yin ◽  
Yin-Qiang Zhang ◽  
Xuming Ji

Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, the prognosis of patients with which is associated with both lncRNAs and cancer immunity. In this study, we collected gene expression data of 585 LUAD patients from The Cancer Genome Atlas (TCGA) database and 605 subjects from the Gene Expression Omnibus (GEO) database. LUAD patients were divided into high and low immune-cell-infiltrated groups according to the single sample gene set enrichment analysis (ssGSEA) algorithm to identify differentially expressed genes (DEGs). Based on the 49 immune-related DE lncRNAs, a four-lncRNA prognostic signature was constructed by applying least absolute shrinkage and selection operator (LASSO) regression, univariate Cox regression, and stepwise multivariate Cox regression in sequence. Kaplan–Meier curve, ROC analysis, and the testing GEO datasets verified the effectiveness of the signature in predicting overall survival (OS). Univariate Cox regression and multivariate Cox regression suggested that the signature was an independent prognostic factor. The correlation analysis revealed that the infiltration immune cell subtypes were related to these lncRNAs.

Author(s):  
Jinhui Liu ◽  
Yichun Wang ◽  
Jie Mei ◽  
Sipei Nie ◽  
Yan Zhang

Uterine Corpus Endometrial Carcinoma (UCEC) is the most common gynecological cancer. Here, we have investigated the significance of immune-related genes in predicting the prognosis and response of UCEC patients to immunotherapy and chemotherapy. Based on the Cancer Genome Atlas (TCGA) database, the single-sample gene-set enrichment analysis (ssGSEA) scores was utilized to obtain enrichment of 29 immune signatures. Univariate, multivariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to generate an immune-related prognostic signature (IRPS). The biological functions of IRPS-associated genes were evaluated using GSEA, Tumor Immune Estimation Resource (TIMER) Database analysis, Mutation analysis, Immunophenoscore (IPS) analysis, Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Immune Cell Abundance Identifier (ImmuCellAI). Potential small molecule drugs for UCEC were predicted using the connectivity map (Cmap). The mRNA and protein expression levels of IRPS-associated genes were tested via quantitative real-time PCR (qPCR) and immunohistology. Two immune-related genes (CCL13 and KLRC1) were identified to construct the IRPS. Both genes were related to the prognosis of UCEC patients (P < 0.05). The IRPS could distinguish patients with different prognosis and was closely associated with the infiltration of several types of immune cells. Our findings showed that patients with low IRPS benefited more from immunotherapy and developed stronger response to several chemotherapies, which was also confirmed by the results of ImmuCellAI. Finally, we identified three small molecular drugs that might improve the prognosis of patients with high IRPS. IRPS can be utilized to predict the prognosis of UCEC patients and provide valuable information about their therapeutic response to immunotherapy and chemotherapy.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199727
Author(s):  
Xinyu Wang ◽  
Jiaojiao Yang ◽  
Xueren Gao

Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, comprising around 40% of all lung cancer. Until now, the pathogenesis of LUAD has not been fully elucidated. In the current study, we comprehensively analyzed the dysregulated genes in lung adenocarcinoma by mining public datasets. Two sets of gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. The dysregulated genes were identified by using the GEO2R online tool, and analyzed by R packages, Cytoscape software, STRING, and GPEIA online tools. A total of 275 common dysregulated genes were identified in two independent datasets, including 54 common up-regulated and 221 common down-regulated genes in LUAD. Gene Ontology (GO) enrichment analysis showed that these dysregulated genes were significantly enriched in 258 biological processes (BPs), 27 cellular components (CCs), and 21 molecular functions (MFs). Furthermore, protein-protein interaction (PPI) network analysis showed that PECAM1, ENG, KLF4, CDH5, and VWF were key genes. Survival analysis indicated that the low expression of ENG was associated with poor overall survival (OS) of LUAD patients. The low expression of PECAM1 was associated with poor OS and recurrence-free survival of LUAD patients. The cox regression model developed based on age, tumor stage, ENG, PECAM1 could effectively predict 5-year survival of LUAD patients. This study revealed some key genes, BPs, CCs, and MFs involved in LUAD, which would provide new insights into understanding the pathogenesis of LUAD. In addition, ENG and PECAM1 might serve as promising prognostic markers in LUAD.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolin Yu ◽  
Xiaomei Zhang ◽  
Yanxia Zhang

Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate. The reprogramming of tumor metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively, downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. This signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. This signature could reveal the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 257 ◽  
Author(s):  
Yitong Zhang ◽  
Joseph Ta-Chien Tseng ◽  
I-Chia Lien ◽  
Fenglan Li ◽  
Wei Wu ◽  
...  

Cancer stem cells (CSCs), characterized by self-renewal and unlimited proliferation, lead to therapeutic resistance in lung cancer. In this study, we aimed to investigate the expressions of stem cell-related genes in lung adenocarcinoma (LUAD). The stemness index based on mRNA expression (mRNAsi) was utilized to analyze LUAD cases in the Cancer Genome Atlas (TCGA). First, mRNAsi was analyzed with differential expressions, survival analysis, clinical stages, and gender in LUADs. Then, the weighted gene co-expression network analysis was performed to discover modules of stemness and key genes. The interplay among the key genes was explored at the transcription and protein levels. The enrichment analysis was performed to annotate the function and pathways of the key genes. The expression levels of key genes were validated in a pan-cancer scale. The pathological stage associated gene expression level and survival probability were also validated. The Gene Expression Omnibus (GEO) database was additionally used for validation. The mRNAsi was significantly upregulated in cancer cases. In general, the mRNAsi score increases according to clinical stages and differs in gender significantly. Lower mRNAsi groups had a better overall survival in major LUADs, within five years. The distinguished modules and key genes were selected according to the correlations to the mRNAsi. Thirteen key genes (CCNB1, BUB1, BUB1B, CDC20, PLK1, TTK, CDC45, ESPL1, CCNA2, MCM6, ORC1, MCM2, and CHEK1) were enriched from the cell cycle Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, relating to cell proliferation Gene Ontology (GO) terms, as well. Eight of the thirteen genes have been reported to be associated with the CSC characteristics. However, all of them have been previously ignored in LUADs. Their expression increased according to the pathological stages of LUAD, and these genes were clearly upregulated in pan-cancers. In the GEO database, only the tumor necrosis factor receptor associated factor-interacting protein (TRAIP) from the blue module was matched with the stemness microarray data. These key genes were found to have strong correlations as a whole, and could be used as therapeutic targets in the treatment of LUAD, by inhibiting the stemness features.


2021 ◽  
Vol 19 (1) ◽  
pp. 169-190
Author(s):  
Peiyuan Li ◽  
◽  
Gangjie Qiao ◽  
Jian Lu ◽  
Wenbin Ji ◽  
...  

<abstract> <p>Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan–Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P &lt; 0.05) and overall survival (OS P &lt; 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.</p> </abstract>


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinhui Liu ◽  
Mengting Xu ◽  
Zhipeng Wu ◽  
Yan Yang ◽  
Shuning Yuan ◽  
...  

Increasing numbers of biomarkers have been identified in various cancers. However, biomarkers associated with endometrial carcinoma (EC) remain largely to be explored. In the current research, we downloaded the RNA-seq data and corresponding clinicopathological features from the Cancer Genome Atlas (TCGA) database. We conducted an expression analysis, which resulted in RILPL2 as a novel diagnostic biomarker in EC. The dysregulation of RILPL2 in EC was also validated in multiple datasets. The correlations between clinical features and RILPL2 expression were assessed by logistic regression analysis. Then, Kaplan-Meier analysis, univariate and multivariate Cox regression analysis were performed to estimate prognostic values of RILPL2 in the TCGA cohort, which revealed that increased level of RILPL2 was remarkably associated with better prognosis and could act as an independent prognostic biomarker in patients with EC. Moreover, correlation analysis of RILPL2 and tumor-infiltrating immune cells (TIICs) indicated that RILPL2 might play a critical role in regulating immune cell infiltration in EC and is related to immune response. Besides, high methylation level was a significant cause of low RILPL2 expression in EC. Subsequently, weighted gene co-expression network analysis (WGCNA) and enrichment analysis were conducted to explore the RILPL2-involved underlying oncogenic mechanisms, and the results indicated that RILPL2 mainly regulated cell cycle. In conclusion, our findings provided evidence that downregulation of RILPL2 in EC is an indicator of adverse prognosis and RILPL2 may act as a promising target for the therapeutics of EC.


2021 ◽  
Author(s):  
Samuel Chuah ◽  
Valerie Chew

Uveal Melanoma (UM) is a rare cancer deriving from melanocytes within the uvea. It has a high rate of metastasis, especially to the liver, and a poor prognosis thereafter. Autophagy, an intracellular programmed digestive process, has been associated with the development and progression of cancers, with controversial pro- and anti-tumour roles. Although previous studies have been conducted on autophagy-related genes (ARGs) in various cancer types, its role in UM requires a deeper understanding for improved diagnosis and development of novel therapeutics. In the current study, Zheng et al. used univariate Cox regression followed by least absolute shrinkage and selection operator (Lasso) regression to identify a robust 9-ARG signature prognostic of survival in a total of 230 patients with UM. The authors used the Cancer Genome Atlas (TCGA) UM cohort as a training cohort (n=80) to identify the signature and validated it in another four independent cohorts of 150 UM patients from the Gene Expression Omnibus (GEO) repository (GSE22138, GSE27831, GSE44295 and GSE84976). This 9-ARG signature was also significantly associated with the enrichment of cancer hallmarks, including angiogenesis, IL6-KJAK-STAT3 signalling, reactive oxygen species pathway and oxidative phosphorylation. More importantly, this signature is associated with immune-related functional pathways and immune cell infiltration. Thus, this 9-ARG signature predicts prognosis and provides deeper insights into the immune mechanisms in UM, with potential implications for future immunotherapy.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2021 ◽  
Author(s):  
Haoshu Zhong ◽  
Yang Liu ◽  
Jialin Duan ◽  
Xiaomin Chen ◽  
Hao Xiong ◽  
...  

Abstract Background: Multiple myeloma (MM), the second most hematological malignancy, the molecular mechanism and pathogenesis of the relapse of MM is poorly understood. This study aimed to identify novel prognostic model for MM and explore potential mechanism of relapse. Methods: Gene expression data,clinical data(GSE24080) and HTseq-Counts files were downloaded from Gene Expression Omnibus (GEO) and TCGA database. Co-expression modules of genes were built by Weighted Correlation Network Analysis (WGCNA).KEGG and GO enrichment analysis were performed in each module. TATFs (tumor-associated transcription factors) were retrieved from the Cistrome. Twenty-two immune cell compositions was calculated by CIBERSORT algorithm.Univariate and multivariate Cox congression were performed and a predictive model by prognostic genes was constructed,the predictive power of the model was evaluated by Kaplan–Meier curve and time-dependent receiver operating characteristic (ROC) curves. Results: A total of 940 DEGs were identified,and in WGCNA analysis, yellow, brown and sky-blue modules were most associated with clinic traits.The yellow module related with the cell cycle and the brown and sky-blue modules correlated with cytokine and its receptors, where the M2 macrophage fraction is positively correlated with CCL18, CCL2, CCL8, CXCL12 and CCl23 were positively correlated with plasma cells by Cibersort analysis.Prognostic genes were identified and two genes (TPX2,PRAM1) were finally identified to construct a risk model for predicting EFS.


2020 ◽  
Author(s):  
Jinhui Liu ◽  
Yichun Wang ◽  
Jie Mei ◽  
Sipei Nie ◽  
Yan Zhang

Abstract Background: Uterine Corpus Endometrial Carcinoma (UCEC) is the most common gynecological cancer. Here, we have investigated the significance of immune-related genes in predicting the prognosis and response of UCEC patients to immunotherapy and chemotherapy.Methods: Based on TCGA database, the single-sample gene-set enrichment analysis (ssGSEA scores) was utilized to obtain enrichment of 29 immune signatures. Univariate, multivariate Cox regression and LASSO regression analyses were performed to generate an immune-related prognostic signature (IRPS). The biological functions of IRPS-associated genes were evaluated using GSEA, TIMER Database analysis, Mutation analysis, IPS analysis, Gene Expression Profiling Interactive Analysis (GEPIA), Genomics of Drug Sensitivity in Cancer (GDSC) and Immune Cell Abundance Identifier (ImmuCellAI). Potential small molecule drugs for UCEC were predicted using the connectivity map (Cmap). The mRNA and protein expression levels of IRPS-associated genes were tested via quantitative real-time PCR (qPCR) and immunohistology.Results: Two immune-related genes (CCL13 and KLRC1) were identified to construct the IRPS. Both genes were related to the prognosis of UCEC patients (P<0.05). The IRPS could distinguish patients with different prognosis and was closely associated with the infiltration of several types of immune cells. Our findings showed that patients with low IRPS benefited more from immunotherapy and developed stronger response to several chemotherapies, which was also confirmed by the results of ImmuCellAI. Finally, we identified three small molecular drugs that might improve the prognosis of patients with high IRPS. Conclusion: IRPS can be utilized to predict the prognosis of UCEC patients and provide valuable information about their therapeutic response to immunotherapy and chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document