scholarly journals Identification of a 5-Gene Metabolic Signature for Predicting Prognosis Based on an Integrated Analysis of Tumor Microenvironment in Lung Adenocarcinoma

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolin Yu ◽  
Xiaomei Zhang ◽  
Yanxia Zhang

Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate. The reprogramming of tumor metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively, downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. This signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. This signature could reveal the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.

2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Jin Zhou ◽  
Zheming Liu ◽  
Huibo Zhang ◽  
Tianyu Lei ◽  
Jiahui Liu ◽  
...  

Purpose. Recent researches showed the vital role of BACH1 in promoting the metastasis of lung cancer. We aimed to explore the value of BACH1 in predicting the overall survival (OS) of early-stage (stages I-II) lung adenocarcinoma. Patients and Methods. Lung adenocarcinoma cases were screened from the Cancer Genome Atlas (TCGA) database. Functional enrichment analysis was performed to obtain the biological mechanisms of BACH1. Gene set enrichment analysis (GSEA) was performed to identify the difference of biological pathways between high- and low-BACH1 groups. Univariate and multivariate COX regression analysis had been used to screen prognostic factors, which were used to establish the BACH1 expression-based prognostic model in the TCGA dataset. The C-index and time-dependent AUC curve were used to evaluate predictive power of the model. External validation of prognostic value was performed in two independent datasets from Gene Expression Omnibus (GEO). Decision analysis curve was finally used to evaluate clinical usefulness of the BACH1-based model beyond pathologic stage alone. Results. BACH1 was an independent prognostic factor for lung adenocarcinoma. High-expression BACH1 cases had worse OS. BACH1-based prognostic model showed an ideal C-index and t -AUC and validated by two GEO datasets, independently. More importantly, the BACH1-based model indicated positive clinical applicability by DCA curves. Conclusion. Our research confirmed that BACH1 was an important predictor of prognosis in early-stage lung adenocarcinoma. The higher the expression of BACH1, the worse OS of the patients.


2021 ◽  
Author(s):  
Lijun Ning ◽  
Yuqing Yan ◽  
Tianying Tong ◽  
Ziyun Gao ◽  
Zhe Cui ◽  
...  

Abstract Background: As tumor microenvironment (TME) play an indispensable role in tumorigenesis of colorectal cancer, this study performs a bunch of bioinformatics analysis to identify the indicator of the status of TME in Colorectal cancer (CRC). Results: In the presented study, we applied CIBERSORT and ESTIMATE computational methods to calculate the proportion of tumor-infiltrating immune cells (TICs) and the amount of immune and stromal components in 444 COAD-READ cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were analyzed by COX regression analysis and protein–protein interaction (PPI) network construction. Then, fatty acid-binding protein four ( FABP4 ) was determined as a predictive factor by the intersection analysis of univariate COX and PPI. Further analysis revealed that FABP4 expression was positively correlated with the clinical pathologic characteristics (clinical stage, distant metastasis) and negatively correlated with the survival of CRC patients. Gene Set Enrichment Analysis (GSEA) showed that the genes in the high-expression FABP4 group were mainly enriched in immune-related activities. In the low-expression FABP4 group, the genes were enriched in metabolic pathways. CIBERSORT analysis for the proportion of TICs revealed that NK cell, CD4 + T cells and CD8 + T cells were negatively correlated with FABP4 expression, suggesting that FABP4 might be a potential prognostic factor of CRC patients. Conclusion: Our study has developed a new biomarker (FABP4) that can predict the status of tumor microenvironment in Colorectal cancer. Keywords: FABP4, tumor microenvironment, ESTIMATE, CIBERSORT, colorectal cancer


2021 ◽  
Vol 12 ◽  
Author(s):  
Jixin Wang ◽  
Xiangjun Yin ◽  
Yin-Qiang Zhang ◽  
Xuming Ji

Lung adenocarcinoma (LUAD) is a major subtype of lung cancer, the prognosis of patients with which is associated with both lncRNAs and cancer immunity. In this study, we collected gene expression data of 585 LUAD patients from The Cancer Genome Atlas (TCGA) database and 605 subjects from the Gene Expression Omnibus (GEO) database. LUAD patients were divided into high and low immune-cell-infiltrated groups according to the single sample gene set enrichment analysis (ssGSEA) algorithm to identify differentially expressed genes (DEGs). Based on the 49 immune-related DE lncRNAs, a four-lncRNA prognostic signature was constructed by applying least absolute shrinkage and selection operator (LASSO) regression, univariate Cox regression, and stepwise multivariate Cox regression in sequence. Kaplan–Meier curve, ROC analysis, and the testing GEO datasets verified the effectiveness of the signature in predicting overall survival (OS). Univariate Cox regression and multivariate Cox regression suggested that the signature was an independent prognostic factor. The correlation analysis revealed that the infiltration immune cell subtypes were related to these lncRNAs.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fangyu Chen ◽  
Jiahang Song ◽  
Ziqi Ye ◽  
Bing Xu ◽  
Hongyan Cheng ◽  
...  

BackgroundLung adenocarcinoma (LUAD) is a leading malignancy and has a poor prognosis over the decades. LUAD is characterized by dysregulation of cell cycle. Immunotherapy has emerged as an ideal option for treating LUAD. Nevertheless, optimal biomarkers to predict outcomes of immunotherapy is still ill-defined and little is known about the interaction of cell cycle-related genes (CCRGs) and immunity-related genes (IRGs).MethodsWe downloaded gene expression and clinical data from TCGA and GEO database. LASSO regression and Cox regression were used to construct a differentially expressed CCRGs and IRGs signature. We used Kaplan-Meier analysis to compare survival of LUAD patients. We constructed a nomogram to predict the survival and calibration curves were used to evaluate the accuracy.ResultsA total of 61 differentially expressed CCRGs and IRGs were screened out. We constructed a new risk model based on 8 genes, including ACVR1B, BIRC5, NR2E1, INSR, TGFA, BMP7, CD28, NUDT6. Subgroup analysis revealed the risk model accurately predicted the overall survival in LUAD patients with different clinical features and was correlated with immune cells infiltration. A nomogram based on the risk model exhibited excellent performance in survival prediction of LUAD.ConclusionsThe 8 gene survival signature and nomogram in our study are effective and have potential clinical application to predict prognosis of LUAD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenting Liu ◽  
Kaiting Jiang ◽  
Jingya Wang ◽  
Ting Mei ◽  
Min Zhao ◽  
...  

BackgroundGlucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a key enzyme in the hexosamine biosynthetic pathway (HBP), which functions as promoting proliferation in some tumors, yet its potential biological function and mechanism in lung adenocarcinoma (LUAD) have not been explored.MethodsThe mRNA differential expression of GNPNAT1 in LUAD and normal tissues was analyzed using the Cancer Genome Atlas (TCGA) database and validated by real-time PCR. The clinical value of GNPNAT1 in LUAD was investigated based on the data from the TCGA database. Then, immunohistochemistry (IHC) of GNPNAT1 was applied to verify the expression and clinical significance in LUAD from the protein level. The relationship between GNPNAT1 and epigenetics was explored using the cBioPortal database, and the miRNAs regulating GNPNAT1 were found using the miRNA database. The association between GNPNAT1 expression and tumor-infiltrating immune cells in LUAD was observed through the Tumor IMmune Estimation Resource (TIMER). Finally, Gene set enrichment analysis (GSEA) was used to explore the biological signaling pathways involved in GNPNAT1 in LUAD.ResultsGNPNAT1 was upregulated in LUAD compared with normal tissues, which was verified through qRT-PCR in different cell lines (P < 0.05), and associated with patients’ clinical stage, tumor size, and lymphatic metastasis status (all P < 0.01). Kaplan–Meier (KM) analysis suggested that patients with upregulated GNPNAT1 had a relatively poor prognosis (P < 0.0001). Furthermore, multivariate Cox regression analysis indicated that GNPNAT1 was an independent prognostic factor for LUAD (OS, TCGA dataset: HR = 1.028, 95% CI: 1.013–1.044, P < 0.001; OS, validation set: HR = 1.313, 95% CI: 1.130–1.526, P < 0.001). GNPNAT1 overexpression was correlated with DNA copy amplification (P < 0.0001), low DNA methylation (R = −0.52, P < 0.0001), and downregulation of hsa-miR-30d-3p (R = −0.17, P < 0.001). GNPNAT1 expression was linked to B cells (R = −0.304, P < 0.0001), CD4+T cells (R = −0.218, P < 0.0001), and dendritic cells (R = −0.137, P = 0.002). Eventually, GSEA showed that the signaling pathways of the cell cycle, ubiquitin-mediated proteolysis, mismatch repair and p53 were enriched in the GNPNAT1 overexpression group.ConclusionGNPNAT1 may be a potential prognostic biomarker and novel target for intervention in LUAD.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lianze Chen ◽  
Baohui Hu ◽  
Xinyue Song ◽  
Lin Wang ◽  
Mingyi Ju ◽  
...  

Accumulating evidence has proven that N6-methyladenosine (m6A) RNA methylation plays an essential role in tumorigenesis. However, the significance of m6A RNA methylation modulators in the malignant progression of papillary renal cell carcinoma (PRCC) and their impact on prognosis has not been fully analyzed. The present research set out to explore the roles of 17 m6A RNA methylation regulators in tumor microenvironment (TME) of PRCC and identify the prognostic values of m6A RNA methylation regulators in patients afflicted by PRCC. We investigated the different expression patterns of the m6A RNA methylation regulators between PRCC tumor samples and normal tissues, and systematically explored the association of the expression patterns of these genes with TME cell-infiltrating characteristics. Additionally, we used LASSO regression to construct a risk signature based upon the m6A RNA methylation modulators. Two-gene prognostic risk model including IGF2BP3 and HNRNPC was constructed and could predict overall survival (OS) of PRCC patients from the Cancer Genome Atlas (TCGA) dataset. The prognostic signature-based risk score was identified as an independent prognostic indicator in Cox regression analysis. Moreover, we predicted the three most significant small molecule drugs that potentially inhibit PRCC. Taken together, our study revealed that m6A RNA methylation regulators might play a significant role in the initiation and progression of PRCC. The results might provide novel insight into exploration of m6A RNA modification in PRCC and provide essential guidance for therapeutic strategies.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3685
Author(s):  
Haoyu Ren ◽  
Jiang Zhu ◽  
Haochen Yu ◽  
Alexandr Bazhin ◽  
Christoph Westphalen ◽  
...  

Increasing evidence indicates that angiogenesis is crucial in the development and progression of gastric cancer (GC). This study aimed to develop a prognostic relevant angiogenesis-related gene (ARG) signature and a nomogram. The expression profile of the 36 ARGs and clinical information of 372 GC patients were extracted from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to divide patients into clusters 1 and 2. Least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to identify the survival related ARGs and establish prognostic gene signatures, respectively. The Asian Cancer Research Group (ACRG) (n = 300) was used for external validation. Risk score of ARG signatures was calculated, and a prognostic nomogram was developed. Gene set enrichment analysis of the ARG model risk score was performed. Cluster 2 patients had more advanced clinical stage and shorter survival rates. ARG signatures carried prognostic relevance in both cohorts. Moreover, ARG-risk score was proved as an independent prognostic factor. The predictive value of the nomogram incorporating the risk score and clinicopathological features was superior to tumor, lymph node, metastasis (TNM) staging. The high-risk score group was associated with several cancer and metastasis-related pathways. The present study suggests that ARG-based nomogram could serve as effective prognostic biomarkers and allow a more precise risk stratification.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Lei Zhang ◽  
Zhe Zhang ◽  
Zhenglun Yu

Abstract Background Lung cancer (LC) is one of the most lethal and most prevalent malignant tumors, and its incidence and mortality are increasing annually. Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Several biomarkers have been confirmed by data excavation to be related to metastasis, prognosis and survival. However, the moderate predictive effect of a single gene biomarker is not sufficient. Thus, we aimed to identify new gene signatures to better predict the possibility of LUAD. Methods Using an mRNA-mining approach, we performed mRNA expression profiling in large LUAD cohorts (n = 522) from The Cancer Genome Atlas (TCGA) database. Gene Set Enrichment Analysis (GSEA) was performed, and connections between genes and glycolysis were found in the Cox proportional regression model. Results We confirmed a set of nine genes (HMMR, B4GALT1, SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and AGRN) that were significantly associated with metastasis and overall survival (OS) in the test series. Based on this nine-gene signature, the patients in the test series could be divided into high-risk and low-risk groups. Additionally, multivariate Cox regression analysis revealed that the prognostic power of the nine-gene signature is independent of clinical factors. Conclusion Our study reveals a connection between the nine-gene signature and glycolysis. This research also provides novel insights into the mechanisms underlying glycolysis and offers a novel biomarker of a poor prognosis and metastasis for LUAD patients.


2021 ◽  
Author(s):  
Jianqiao Yang ◽  
Liang Shang ◽  
Leping Li ◽  
Zixiao Wang ◽  
Kangdi Dong ◽  
...  

Abstract Background: Gastric cancer (GC) is a common malignant tumour of the digestive tract. the prognosis of GC patients is still not optimistic. Apoptosis-related genes (ARGs) plays an important role in the development, invasion, metastasis and drug resistance of GC. Therefore, assessing the interaction between ARGs and the prognosis of GC patients may help identify specific biomarkers.Methods: Differentially expressed genes (DEGs) were identified by integrating gene expression profiling analyses from The Cancer Genome Atlas (TCGA) GC cohort and Gene Set Enrichment Analysis (GSEA) Database. Then, a risk score model was built based on Kaplan-Meier (K-M), least absolute shrinkage and selector operation (LASSO), and multivariate Cox regression analyses. Another cohort (GSE84426) was used for external validation. By combining risk scores with clinical variables, a nomogram was constructed to predict the prognosis of GC patients. Results: We screened 39 DEGS and established a three-gene signature(CAV1、F2、LUM) based on 161 ARGs. In addition, three-gene signature was identified as an independent factor in predicting the prognosis of GC patients and validated in an external independent cohort. Finally, we developed a nomogram that can be applied to clinical practice.Conclusions: Our study established a three-gene signature of GC based on ARGs that has reference significance for in-depth research on the apoptosis mechanism of GC and the exploration of new clinical treatment strategies.


2021 ◽  
Author(s):  
Jichang Liu ◽  
Yadong Wang ◽  
Weiqing Zhong ◽  
Yong Liu ◽  
Kai Wang ◽  
...  

Abstract Background: Lung cancer remains the most fatal tumorous disease in the worldwide. Among that, lung adenocarcinoma (LUAD) was the most common histological type. A precise and concise prognostic model was urgently needed of LUAD. We developed a 23-gene signature for prognosis prediction based on EMT, immune and stromal datasets.Methods: Univariate Cox regression analysis was performed to select genes which were significantly associated with overall survival (OS) of the TCGA LUAD cohorts. LASSO regression and multivariate Cox regression analysis was used to build the multi-gene signature. Enrichment analyses and a protein-protein interactions (PPI) network were performed to show the interaction and functions of the signature. A nomogram was developed based on risk score and other clinical features. Predictive performance of the signature was externally validated in two independent datasets from Gene Expression Omnibus (GSE37745 and GSE13213).Results: A total of 1334 EMT, immune and stromal associated genes were obtained. After LASSO regression and multivariate Cox regression analysis, a 23-gene signature for risk stratification was built. K-M curves showed that the patients with high risk had a poorer outcome. Finally, a nomogram was built to predict prognosis. The predictive performance of the 23-gene signature was confirmed in internal and external validation.Conclusion: We developed and verified a 23-gene signature based on EMT, immune and stromal gene sets. It provided a convenient and concise tool for risk stratificationand individual medicine.


Sign in / Sign up

Export Citation Format

Share Document