scholarly journals The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics

2021 ◽  
Vol 12 ◽  
Author(s):  
Elham Zeinalzadeh ◽  
Alexey Valerievich Yumashev ◽  
Heshu Sulaiman Rahman ◽  
Faroogh Marofi ◽  
Navid Shomali ◽  
...  

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.

Author(s):  
Yarely M. Salinas-Vera ◽  
Dolores Gallardo-Rincón ◽  
Erika Ruíz-García ◽  
Macrina B. Silva-Cázares ◽  
Carmen Sol de la Peña-Cruz ◽  
...  

: Endometrial cancer represents the most frequent neoplasia from the corpus uteri, and comprises the 14th leading cause of death in women worldwide. Risk factors that contribute to the disease include early menarche, late menopause, nulliparity, and menopausal hormone use, as well as hypertension and obesity comorbidities. The clinical effectiveness of chemotherapy is variable, suggesting that novel molecular targeted therapies against specific cellular processes associated with the maintenance of cancer cell survival and therapy resistance urged to ameliorate the rates of success in endometrial cancer treatment. In the course of tumor growth, cancer cells must adapt to decreased oxygen availability in the microenvironment by upregulation of hypoxia-inducible factors, which orchestrate the activation of a transcriptional program leading to cell survival. During this adaptative process, the hypoxic cancer cells may acquire invasive and metastatic properties as well as increased cell proliferation and resistance to chemotherapy, enhanced angiogenesis, vasculogenic mimicry, and maintenance of cancer cell stemness, which contribute to more aggressive cancer phenotypes. Several studies have shown that hypoxia-inducible factor 1 alpha (HIF-1α) protein is aberrantly overexpressed in many solid tumors from breast, prostate, ovarian, bladder, colon, brain, and pancreas. Thus, it has been considered an important therapeutic target. Here, we reviewed the current knowledge of the relevant roles of cellular hypoxia mechanisms and HIF-1α functions in diverse processes associated with endometrial cancer progression. In addition, we also summarize the role of microRNAs in the posttranscriptional regulation of protein-encoding genes involved in the hypoxia response in endometrial cancer. Finally, we pointed out the need for urgent targeted therapies to impair the cellular processes activated by hypoxia in the tumor microenvironment.


Author(s):  
E. Lotzová ◽  
C. A. Savary ◽  
K. A. Dicke ◽  
S. Jagannath

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 11101-11101
Author(s):  
Erica Michelle Stringer ◽  
Maxwell N. Skor ◽  
Gini F. Fleming ◽  
Suzanne D. Conzen

11101 Background: Ovarian cancer is the leading cause of death from gynecologic malignancies. High-grade serous ovarian cancer (HGS-OvCa) is often initially sensitive to platinum-based therapy, but relapse rates remain high. The TCGA recently found that HGS-OvCas have a gene expression and mutational profile similar to that of triple negative breast cancer (TNBC). Previously, our group demonstrated that dexamethasone treatment decreased chemotherapy-induced tumor cell apoptosis in TNBC and HGS-OvCa cell lines. We have also shown that glucocorticoid receptor (GR) activation induces expression of anti-apoptotic genes SGK1 and MKP1/DUSP1 in both HGS-OvCa and TNBC cell lines and in primary human ovarian and TNBC tumors. Methods: We examined glucocorticoid receptor (GR), estrogen receptor (ER), and progesterone receptor (PR) expression in a panel of HGS-OvCa cell lines by Western analysis and qRT-PCR. We also performed apoptosis assays with and without mifepristone, glucocorticoid and/or chemotherapy treatment using IncuCyte live-cell imaging technology in order to measure the effect of GR modulation of chemotherapy sensitivity. Results: HGS-OvCa cell lines (including CAOV3, HeyA8, SKOV3, Monty-1) all had detectable GR expression; HeyA8, SKOV3, and Monty-1 cell lines expressed very low levels of ER-alpha while all other HGS-OvCa cell lines did not express any detectable ER-alpha. Furthermore, none of the HGS-OvCa cell lines tested expressed PR.Apoptosis assays revealed that GR activation significantly inhibited gemcitabine/carboplatin-induced apoptosis in HGS-OvCa cell lines and that mifepristone could reverse this cell survival effect, presumably through GR antagonism. Conclusions: These results suggest that treatment with mifepristone, a GR antagonist, reverses GR-mediated cell survival signaling in HGS-OvCa and increases chemotherapy-induced tumor cell death. To further investigate the role of GR activity in HGS-OvCa, we are currently performing xenograft experiments with chemotherapy +/- mifepristone treatment.


2017 ◽  
Vol 176 (5) ◽  
pp. R247-R267 ◽  
Author(s):  
Gunn-Helen Moen ◽  
Christine Sommer ◽  
Rashmi B Prasad ◽  
Line Sletner ◽  
Leif Groop ◽  
...  

ObjectiveTo summarize the current knowledge on epigenetic alterations in mother and offspring subjected to gestational diabetes (GDM) and indicate future topics for research.DesignSystematic review.MethodsWe performed extensive searches in PubMed, EMBASE and Google scholar, using a combination of the search terms: GDM, gestational diabetes, epigenetic(s), methylation, histone modification, histone methylation, histone acetylation, microRNA and miRNA. Studies that compared women diagnosed with GDM and healthy controls were included. Two authors independently scanned the abstracts, and all included papers were read by at least two authors. The searches were completed on October 31st, 2016.ResultsWe identified 236 articles, of which 43 were considered relevant for this systematic review. Studies published showed that epigenetic alterations could be found in both mothers with GDM and their offspring. However, differences in methodology, diagnostic criteria for GDM and populations studied, together with a limited number of published studies and small sample sizes, preclude clear conclusions about the role of epigenetic modifications in transmitting risk from GDM mothers to their offspring.ConclusionThe current research literature suggests that GDM may have impact on epigenetic modifications in the mother and offspring. However, larger studies that include multiple cohorts of GDM patients and their offspring are needed.


2021 ◽  
Vol 22 (21) ◽  
pp. 11927
Author(s):  
Esmeralda Magro-Lopez ◽  
María Ángeles Muñoz-Fernández

Bone morphogenetic proteins (BMPs) are a group of multifunctional growth factors that belong to the transforming growth factor-β (TGF-β) superfamily of proteins. Originally identified by their ability to induce bone formation, they are now known as essential signaling molecules that regulate the development and function of the female reproductive system (FRS). Several BMPs play key roles in aspects of reproductive system development. BMPs have also been described to be involved in the differentiation of human pluripotent stem cells (hPSCs) into reproductive system tissues or organoids. The role of BMPs in the reproductive system is still poorly understood and the use of FRS tissue or organoids generated from hPSCs would provide a powerful tool for the study of FRS development and the generation of new therapeutic perspectives for the treatment of FRS diseases. Therefore, the aim of this review is to summarize the current knowledge about BMP signaling in FRS development and function.


Sign in / Sign up

Export Citation Format

Share Document