scholarly journals Whole-Genome Identification and Comparative Expression Analysis of Anthocyanin Biosynthetic Genes in Brassica napus

2021 ◽  
Vol 12 ◽  
Author(s):  
Dan He ◽  
Dawei Zhang ◽  
Ting Li ◽  
Lili Liu ◽  
Dinggang Zhou ◽  
...  

Anthocyanins contribute to most colors of plants and play protective roles in response to abiotic stresses. Brassica napus is widely cultivated worldwide as both an oilseed and a vegetable. However, only several high anthocyanin-containing cultivars have been reported, and the mechanisms of anthocyanin accumulation have not been well-elucidated in B. napus. Here, the phenotype, comparative whole-genome identification, and gene expression analysis were performed to investigate the dynamic change of the anthocyanin content and the gene expression patterns of anthocyanin biosynthetic genes (ABGs) in B. napus. A total of 152 ABGs were identified in the B. napus reference genome. To screen out the critical genes involved in anthocyanin biosynthesis and accumulation, the RNA-seq of young leaves of two B. napus lines with purple leaves (PL) or green leaves (GL), and their F1 progeny at 41, 91, and 101 days were performed to identify the differentially expressed genes. The comparative expression analysis of these ABGs indicated that the upregulation of TT8 together with its target genes (such as DFR, ANS, UFGT, and TT19) might promote the anthocyanin accumulation in PL at the early developmental stage (41–91 days). While the downregulation of those ABGs and anthocyanin degradation at the late developmental stage (91–101 days) might result in the decrease in anthocyanin accumulation. Our results would enhance the understanding of the regulatory network of anthocyanin dynamic accumulation in B. napus.

Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 898
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Xianjie Gu ◽  
Diya Lei ◽  
Bing Zhao ◽  
...  

Red-skinned pear is a promising commercial fruit due to its attractive appearance and nutritious value. Anthocyanin is the determinant of the red coloration of the pear peel. However, differences in anthocyanin accumulation exist among red pear cultivars with different genetic backgrounds. In this study, we analyzed the anthocyanin content and gene expression patterns in the fruits and different tissues of the red pear ‘Red Zaosu’ at different developmental stages and found a difference in anthocyanin accumulation between ‘Red Zaosu’ pear and its green mutant. The data showed that the expression profiles of transcripts that encoded critical anthocyanin biosynthetic genes were basically consistent with a tendency to a decreased anthocyanin content during fruit development, indicating that a synergistic effect of these genes was responsible for anthocyanin biosynthesis and regulation. Tissue-specific expression analysis of anthocyanin biosynthetic genes showed that they could be expressed in all tissues but at different levels. PbF3H, PbDFR, and PbANS were mainly expressed during the early flowering period, which explained the reduced levels of anthocyanin content in petals. Additionally, the content of anthocyanins and the expression levels of PbDFR, PbANS, and PbMYB10 significantly decreased in the green mutant of ‘Red Zaosu’, suggesting that PbDFR, PbANS, and PbMYB10 probably play a decisive role in determining the skin coloration of ‘Red Zaosu’ and its green mutant.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


2020 ◽  
Vol 19 (5) ◽  
pp. 1250-1260
Author(s):  
Da-wei ZHANG ◽  
Li-li LIU ◽  
Ding-gang ZHOU ◽  
Xian-jun LIU ◽  
Zhong-song LIU ◽  
...  

Plant Science ◽  
2006 ◽  
Vol 170 (3) ◽  
pp. 571-578 ◽  
Author(s):  
Benjamin Ewa Ubi ◽  
Chikako Honda ◽  
Hideo Bessho ◽  
Satoru Kondo ◽  
Masato Wada ◽  
...  

Planta ◽  
2012 ◽  
Vol 237 (4) ◽  
pp. 1065-1082 ◽  
Author(s):  
Mohamed Elhiti ◽  
Owen S. D. Wally ◽  
Mark F. Belmonte ◽  
Ainsley Chan ◽  
Yongguo Cao ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54664 ◽  
Author(s):  
Alejandra Idan Valencia-Cruz ◽  
Laura I. Uribe-Figueroa ◽  
Rodrigo Galindo-Murillo ◽  
Karol Baca-López ◽  
Anllely G. Gutiérrez ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2436-2436
Author(s):  
L. Zhou ◽  
J. Opalinska ◽  
D. Sohal ◽  
R. Thompson ◽  
Y. Li ◽  
...  

Abstract Myelodysplasia (MDS) is a clonal hematopoietic disorder that leads to ineffective hematopoiesis and peripheral cytopenias. DNMT inhibitors such as azacytidine have led to clinical responses in patients, though the genes affected by epigenetic alterations are not well known. Whole genome DNA methylation was analyzed by a recently described novel method, The HELP assay (HpaII tiny fragment Enrichment by Ligation-mediated PCR; Khulan et al, Genome Res. 2006 Aug;16(8)) that uses differential methylation specific restriction digestion by HpaII and MspI followed by amplification, two color labeling and cohybridization to quantitatively determine individual promoter island methylation. A whole genome human promoter array (Nimblegen) was used to determine the level of methylation of 25626 gene promoters by calculating HpaII/MspI cut fragment intensity ratio. Peripheral blood leucocytes from 13 patients with MDS were compared to 9 age matched normal and anemic controls. Gene expression analysis was performed using 37K oligo maskless arrays on cDNA obtained from the same samples. Analysis showed that whole genome methylation profiling has greater discriminatory power in separating clusters of MDS samples from normal and anemic controls when compared to gene expression analysis. Unsupervised clustering based on epigenetic profiling demonstrated that only two cases of early MDS clustered with normals as compared to absolutely no separation between MDS and normals with clustering based on gene expression patterns. A high correlation (r=0.88–0.96) was observed between global methylation profiles of matched sets of bone marrow and peripheral blood leucocyte samples from selected patients demonstrating that peripheral blood leucocytes can be a valid surrogate for epigenomic analysis. Further analysis showed that genes consistently aberrantly methylated in MDS included Syk kinase, HOXB3, several histone acetyltranferases and others. Functional analysis by Ingenuity showed that cancer and cell signaling pathways were the most affected by epigenetic silencing. Most interestingly, a large proportion of gene promoters were also aberrantly hypomethylated. These included genes from Ras oncogene family, the CDC42 GTPase, various methyl binding proteins and other proteins mainly encoding for cancer and hematopoiesis functional pathways, thus biologically validating our analysis. Therefore, our data demonstrates that MDS is characterized by distinct epigenetic aberrations that are preserved in peripheral blood leucocytes. These can be the basis of future studies on pathogenesis and diagnosis for this disease and can potentially uncover a new set of therapeutic gene targets.


Sign in / Sign up

Export Citation Format

Share Document