scholarly journals A Comprehensive Review of the Therapeutic Value of Urine-Derived Stem Cells

2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhou ◽  
Yiyu Cheng ◽  
Fang Sun ◽  
Jie Shen ◽  
M. I. Nasser ◽  
...  

Stem cells possess regenerative powers and multidirectional differentiation potential and play an important role in disease treatment and basic medical research. Urine-derived stem cells (USCs) represent a newly discovered type of stem cell with biological characteristics similar to those of mesenchymal stromal cells (MSCs), including their doubling time and immunophenotype. USCs are noninvasive and can be readily obtained from voided urine and steadily cultured. Based on advances in this field, USCs and their secretions have increasingly emerged as ideal sources. USCs may play regulatory roles in the cellular immune system, oxidative stress, revascularization, apoptosis and autophagy. This review summarizes the applications of USCs in tissue regeneration and various disease treatments. Furthermore, by analysing their limitations, we anticipate the development of more feasible therapeutic strategies to promote USC-based individualized treatment.

Author(s):  
Lin Yuan ◽  
Naoya Sakamoto ◽  
Guanbin Song ◽  
Masaaki Sato

Mesenchymal stem cells (MSCs) represent as multipotent stem cells which hold the abilities of self-renewal and give rise to cells of diverse lineages [1]. With their remarkable combination of multipotent differentiation potential and low immunogenicity, MSCs are considered to be an attractive candidate for cell-based tissue repair and regenerative tissue engineering [2, 3]. Increasing number of studies has demonstrated that mobilization and migration of injected MSCs to the damaged tissues is a key step for these cells to participate in disease treatment and tissue regeneration [4, 5].


2020 ◽  
Vol 21 (18) ◽  
pp. 6589
Author(s):  
Giulia Gaggi ◽  
Andrea Di Credico ◽  
Pascal Izzicupo ◽  
Francesco Alviano ◽  
Michele Di Mauro ◽  
...  

Degeneration of dopaminergic neurons represents the cause of many neurodegenerative diseases, with increasing incidence worldwide. The replacement of dead cells with new healthy ones may represent an appealing therapeutic approach to these pathologies, but currently, only pluripotent stem cells can generate dopaminergic neurons with high efficiency. However, with the use of these cells arises safety and/or ethical issues. Human mesenchymal stromal cells (hFM-MSCs) are perinatal stem cells that can be easily isolated from the amniochorionic membrane after delivery. Generally considered multipotent, their real differentiative potential is not completely elucidated. The aim of this study was to analyze their stemness characteristics and to evaluate whether they may overcome their mesenchymal fate, generating dopaminergic neurons. We demonstrated that hFM-MSCs expressed embryonal genes OCT4, NANOG, SOX2, KLF4, OVOL1, and ESG1, suggesting they have some features of pluripotency. Moreover, hFM-MSCs that underwent a dopaminergic differentiation protocol gradually increased the transcription of dopaminergic markers LMX1b, NURR1, PITX3, and DAT. We finally obtained a homogeneous population of cells resembling the morphology of primary midbrain dopaminergic neurons that expressed the functional dopaminergic markers TH, DAT, and Nurr1. In conclusion, our results suggested that hFM-MSCs retain the expression of pluripotency genes and are able to differentiate not only into mesodermal cells, but also into neuroectodermal dopaminergic neuron-like cells.


2016 ◽  
Vol 113 (16) ◽  
pp. E2306-E2315 ◽  
Author(s):  
Vashe Chandrakanthan ◽  
Avani Yeola ◽  
Jair C. Kwan ◽  
Rema A. Oliver ◽  
Qiao Qiao ◽  
...  

Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lin Liu ◽  
Kun Liu ◽  
Yanzhe Yan ◽  
Zhuangzhuang Chu ◽  
Yi Tang ◽  
...  

Objectives. Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). Materials and Methods. hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. Results. The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. Conclusions. Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.


2018 ◽  
Author(s):  
Carolin Göbel ◽  
Roman Goetzke ◽  
Thomas Eggermann ◽  
Wolfgang Wagner

AbstractReplicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.


2012 ◽  
Vol 197 (5) ◽  
pp. 575-584 ◽  
Author(s):  
Alexandra Van Keymeulen ◽  
Cédric Blanpain

Epithelia ensure many critical functions of the body, including protection against the external environment, nutrition, respiration, and reproduction. Stem cells (SCs) located in the various epithelia ensure the homeostasis and repair of these tissues throughout the lifetime of the animal. Genetic lineage tracing in mice has allowed the labeling of SCs and their progeny. This technique has been instrumental in characterizing the origin and heterogeneity of epithelial SCs, their tissue location, and their differentiation potential under physiological conditions and during tissue regeneration.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2356-2356 ◽  
Author(s):  
Yukiko Doi ◽  
Takafumi Yokota ◽  
Tomohiko Ishibashi ◽  
Yusuke Satoh ◽  
Michiko Ichii ◽  
...  

Abstract Background: Lifelong hematopoiesis is maintained by cell differentiation in which signaling pathways and transcription factors coordinately induce step-wise maturation of hematopoietic stem cells (HSCs) toward downstream effector cells. In addition, the organization of chromatin structure that creates accessible sites of target genes is also essential so as to ensure temporally and spatially adequate control of internal gene expression. Murine HSCs can be isolated with high efficiency using surface molecules including lineage-related markers, c-Kit, Sca-1, Flt3 and SLAM family proteins. However, even the highly enriched HSC fraction is still heterogeneous regarding differentiation potential, and how the HSC diversity reflects the heterogeneity of intrinsic gene-expression in HSCs is as-yet-unknown. We previously identified Special AT-rich Sequence Binding protein 1 (SATB1), a global chromatin regulator, as a lymphoid-related gene in the HSC differentiation (Satoh and Yokota et al. Immunity 2013). Indeed, SATB1 overexpression strongly enhanced both T and B lymphopoietic potential of murine HSCs whereas SATB1 deficiency caused malfunctions of HSCs in the lymphopoietic activity. Furthermore, another report showed that SATB1-deficient HSCs were less quiescent in transplanted recipients and more prone to differentiate preferentially to myeloid-erythroid lineages (Will et al. Nat Immunol 2013). These results suggested that SATB1 is likely indispensable not only for the lymphopoietic potential but also for the integrity of HSCs. Here, to better understand the mechanism how SATB1 influences homeostatic HSC functions in adult bone marrow (BM), we have developed a new mouse model in which SATB1 expression can be precisely monitored along the HSC differentiation. Methods: The Tomato gene, coding a red fluorescent protein, was knock-in to the coding region of endogenous Satb1 gene. The heterozygous SATB1/Tomato knock-in mice in which one Satb1 allele was replaced with the Tomato were used to sort HSCs in adult BM. The sorted cells were evaluated for the differentiation potential with methylcellulose colony assays and co-cultures with MS5 stromal cells. Further, the long-term reconstitution ability was evaluated by transplantation to lethally irradiated mice. To obtain transcriptome information, total RNA was isolated from SATB1/Tomato- and SATB1/Tomato+ HSCs, and then next-generation sequencing was performed. The data were analyzed with the Ingenuity Pathway Analysis software. Results: We defined Lin- Sca1+ c-KitHi (LSK) CD150+ Flt3- cells as HSCs, especially adopting FLT3- to exclude FLT3+ lymphoid-primed multipotent progenitors from our functional analyses. We found that the LSK CD150+ Flt3- fraction contains substantial number of SATB1/Tomato+ cells. While both SATB1/Tomato- and SATB1/Tomato+ HSCs produced numerous CFU-Mix and CFU-GM/G/M colonies, the latter were less potent to produce BFU-E. In co-culture with MS5 stromal cells that support B and myeloid lineages, the output of B lineage cells from SATB1+ HSCs was more robust than that of SATB1- HSCs. Upon transplantation, enhanced B-lineage engraftment was observed in the SATB1+ HSC-transplanted recipients. Interestingly, while the two types of HSCs showed obvious difference in the differentiation potential toward lymphoid or myeloid lineage, both HSCs reconstituted the LSK CD150+ Flt3- fraction that similarly contained SATB1/Tomato- and SATB1/Tomato+ cells. With the RNA-sequencing data of SATB1- and SATB1+ HSCs, biological pathway analyses revealed that the "Hematological System Development and Function" pathway was remarkably up-regulated in the SATB1+ HSCs. Among subcategories of the "Hematological System Development and Function" pathway, the "quantity of lymphocytes" pathway was increased whereas "quantity of myeloid cells" and "quantity of granulocytes" pathways were decreased. Conclusion: We have developed a new mouse system that can be used to identify and isolate viable lymphoid-biased HSCs in the most primitive hematopoietic cell fraction of adult BM. While the SATB1- and SATB1+ HSCs differ genetically and functionally, both subtypes have displayed a self-renewal activity with mutual interconversion in transplanted recipients. These findings suggest that functional heterogeneity and variability within the HSC population is, at least in part, a manifestation of SATB1 expression. Disclosures Yokota: SHIONOGI & CO., LTD.: Research Funding.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Aleksandra Klimczak ◽  
Urszula Kozlowska

Multipotent mesenchymal stromal/stem cells (MSCs) reside in many human organs and comprise heterogeneous population of cells with self-renewal ability. These cells can be isolated from different tissues, and their morphology, immunophenotype, and differentiation potential are dependent on their tissue of origin. Each organ contains specific population of stromal cells which maintain regeneration process of the tissue where they reside, but some of them have much more wide plasticity and differentiate into multiple cells lineage. MSCs isolated from adult human tissues are ideal candidates for tissue regeneration and tissue engineering. However, MSCs do not only contribute to structurally tissue repair but also MSC possess strong immunomodulatory and anti-inflammatory properties and may influence in tissue repair by modulation of local environment. This paper is presenting an overview of the current knowledge of biology of tissue-resident mesenchymal stromal and progenitor cells (originated from bone marrow, liver, skeletal muscle, skin, heart, and lung) associated with tissue regeneration and tissue homeostasis.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 160 ◽  
Author(s):  
Shinichiro Yoshida ◽  
Atsushi Tomokiyo ◽  
Daigaku Hasegawa ◽  
Sayuri Hamano ◽  
Hideki Sugii ◽  
...  

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document