scholarly journals Immunomodulatory Effects of Rhinovirus and Enterovirus Infections During the First Year of Life

2021 ◽  
Vol 11 ◽  
Author(s):  
Terhi Ruohtula ◽  
Anita Kondrashova ◽  
Jussi Lehtonen ◽  
Sami Oikarinen ◽  
Anu-Maaria Hämäläinen ◽  
...  

Early childhood infections have been implicated in the development of immune-mediated diseases, such as allergies, asthma, and type 1 diabetes. We set out to investigate the immunomodulatory effects of early viral infections experienced before the age of one year on the peripheral regulatory T cell population (Treg) and circulating cytokines in a birth-cohort study of Estonian and Finnish infants. We show here a temporal association of virus infection with the expression of FOXP3 in regulatory T cells. Infants with rhinovirus infection during the preceding 30 days had a higher FOXP3 expression in Treg cells and decreased levels of several cytokines related to Th1 and Th2 responses in comparison to the children without infections. In contrast, FOXP3 expression was significantly decreased in highly activated (CD4+CD127−/loCD25+FOXP3high) regulatory T cells (TregFOXP3high) in the infants who had enterovirus infection during the preceding 30 or 60 days. After enterovirus infections, the cytokine profile showed an upregulation of Th1- and Th17-related cytokines and a decreased activation of CCL22, which is a chemokine derived from dendritic cells and associated with Th2 deviation. Our results reveal that immunoregulatory mechanisms are up-regulated after rhinovirus infections, while enterovirus infections are associated with activation of proinflammatory pathways and decreased immune regulation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mei Ding ◽  
Rajneesh Malhotra ◽  
Tomas Ottosson ◽  
Magnus Lundqvist ◽  
Aman Mebrahtu ◽  
...  

AbstractRegulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.


2021 ◽  
Vol 22 (21) ◽  
pp. 11977
Author(s):  
Jocelyn C. Pérez-Lara ◽  
Enrique Espinosa ◽  
Leopoldo Santos-Argumedo ◽  
Héctor Romero-Ramírez ◽  
Gabriela López-Herrera ◽  
...  

CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38− regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells.


2019 ◽  
Vol 14 (4) ◽  
pp. 508-524 ◽  
Author(s):  
Heike Schmitt ◽  
Julia Ulmschneider ◽  
Ulrike Billmeier ◽  
Michael Vieth ◽  
Patrizio Scarozza ◽  
...  

Abstract Background and Aims The topically applied Toll-like receptor 9 [TLR9] agonist cobitolimod is a first-in-class DNA-based oligonucleotide with demonstrated therapeutic efficacy in clinical trials with ulcerative colitis [UC] patients. We here characterized its anti-inflammatory mechanism in UC. Methods Luminal cobitolimod administration was evaluated in an experimental dextran sodium sulfate [DSS]-induced colitis model. Cultured blood and mucosal cells from UC patients were treated with cobitolimod and analysed via microarray, quantitative real-time PCR, ELISA and flow cytometry. Intestinal slides of cobitolimod-treated UC patients were analysed by immunohistochemistry. Results Cobitolimod administration markedly suppressed experimental colitis activity, and microarray analyses demonstrated mucosal IL10 upregulation and suppression of IL17 signalling pathways. Cobitolimod treatment was associated with significant induction of mucosal IL10+Tr1 and Treg cells and suppression of Th17 cells. TLR9 knockout mice indicated that cobitolimod requires TLR9 signalling for IL10 induction. In UC patients, mucosal TLR9 levels correlated with severity of inflammation. Cobitolimod inhibited IL17A and IL17F, but increased IL10 and FoxP3 expression in cultured intestinal UC T cells. Cobitolimod-mediated suppression of intestinal IL17+T cells was abrogated by IL10 blockade. Furthermore, cobitolimod led to heightened IL10 production by wound healing macrophages. Immunohistochemistry in intestinal biopsies of cobitolimod-treated UC patients indicated increased presence of IL10+mononuclear and regulatory T cells, as well as reduction of IL17+cells. Conclusion Activation of TLR9 via cobitolimod might represent a novel therapeutic approach in UC, as it suppresses Th17 cells and induces anti-inflammatory IL10+macrophages and regulatory T cells, thereby modifying the dysregulated intestinal cytokine balance. Podcast This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast


2021 ◽  
Author(s):  
Mark Mensink ◽  
Ellen Schrama ◽  
Maartje van den Biggelaar ◽  
Derk Amsen ◽  
Jannie Borst ◽  
...  

The CD4+ regulatory T (Treg) cell lineage, as defined by FOXP3 expression, comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. In human, naive tTreg cells can be purified from blood, but occur in low abundance, while effector pTreg and tTreg cell populations cannot be purified for lack of discriminating cell surface markers. Therefore, studies often employ TGF-β-induced (i)Treg cells that are generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe the relationship of iTreg cells to tTreg and Tconv cells, as optimally purified from human blood. Global proteomic analysis revealed that iTreg, tTreg and Tconv cell populations each have a unique protein expression pattern. We next used as a benchmark a previously defined proteomic signature that discerns ex vivo naive and effector phenotype Treg cells from Tconv cells and reflects unique Treg cell properties. This Treg cell core signature was largely absent from iTreg cells, while clearly present in simultaneously analyzed tTreg cells. In addition, we used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naive Treg cells. This effector Treg cell signature was partially present in iTreg cells. Thus, iTreg cells are distinct from tTreg cells and largely lack the common Treg cell proteomic signature. However, they do have certain protein expression features in common with ex vivo effector Treg cells. These data demonstrate the utility of the core and effector Treg cell signatures as tools to define Treg cell populations and encourage the use of ex vivo Treg cells for functional analyses.


Blood ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 804-811 ◽  
Author(s):  
Marc Beyer ◽  
Joachim L. Schultze

Abstract Increasing evidence supports the existence of elevated numbers of regulatory T cells (Treg cells) in solid tumors and hematologic malignancies. Whereas the biology of CD4+CD25+FOXP3+ Treg cells in murine models seems to be rather straightforward, studies in human diseases are more difficult to interpret due to expression of CD25 on activated effector T cells as well as Treg cells. More importantly, early studies in human tumors were mainly focused on CD4+CD25+ Treg cells lacking interrogation of more specific markers such as FOXP3 expression. Although the increase of Treg cells seems to be a characteristic feature in most tumors, little is known about the molecular and cellular mechanisms responsible for the increase and maintenance of elevated levels of Treg cells in cancer. We will discuss earlier data in the context of recent findings in Treg-cell biology with a particular emphasis on CD4+CD25highFOXP3+ Treg cells in human malignancies.


2014 ◽  
Vol 89 (4) ◽  
pp. 2112-2120 ◽  
Author(s):  
Jenny W. Che ◽  
Anke R. M. Kraft ◽  
Liisa K. Selin ◽  
Raymond M. Welsh

ABSTRACTRegulatory T (Treg) cells are important in the maintenance of self-tolerance, and the depletion of Treg cells correlates with autoimmune development. It has been shown that type I interferon (IFN) responses induced early in the infection of mice can drive memory (CD44hi) CD8 and CD4 T cells into apoptosis, and we questioned here whether the apoptosis of CD44-expressing Treg cells might be involved in the infection-associated autoimmune development. Instead, we found that Treg cells were much more resistant to apoptosis than CD44hi CD8 and CD4 T cells at days 2 to 3 after lymphocytic choriomeningitis virus infection, when type I IFN levels are high. The infection caused a downregulation of the interleukin-7 (IL-7) receptor, needed for survival of conventional T cells, while increasing on Treg cells the expression of the high-affinity IL-2 receptor, needed for STAT5-dependent survival of Treg cells. The stably maintained Treg cells early during infection may explain the relatively low incidence of autoimmune manifestations among infected patients.IMPORTANCEAutoimmune diseases are controlled in part by regulatory T cells (Treg) and are thought to sometimes be initiated by viral infections. We tested the hypothesis that Treg may die off at early stages of infection, when virus-induced factors kill other lymphocyte types. Instead, we found that Treg resisted this cell death, perhaps reducing the tendency of viral infections to cause immune dysfunction and induce autoimmunity.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5426-5426
Author(s):  
Tzeon-Jye Chiou ◽  
Tan-Hwa Chu ◽  
Sin-Tak Chu ◽  
Woan-Fang Tzeng

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) has been used to treat some of hematological malignancies and inherited or acquired non-malignant disorders. Unfortunately, graft-versus-host disease (GVHD) occurred approximately 15% in transplant recipients and impacts on the outcome of allogeneic HSCT. At present, no effective modality could completely prevent the GVHD from allogeneic HSCT patients. CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmunity. However, 5% to 10% Tregs could be measured in human CD4+ T cells and few Tregs would convert to conventional activated T cells because of losing FoxP3 expression orn Tregs in suppression of T cell activation. It had been reported to correlate with the occurrence and severity of GVHD in some study. In order to study the potential use of CD4+ CD25+ FoxP3+ Tregs for the prevention of GVHD, we attempt to evaluate the better efficient method to increase the number of induced Treg cells (i Tregs) in donor and stabilize the FoxP3 ini Treg cells. Using mouse as a model, the splenocytes were prepared from mouse spleen. Before having biological function,i Treg cells need to stabilize the FoxP3 protein expression. Using retinoic acid (RA, 0.1-5ng/ml) as a stabilizer of the FoxP3 protein expression can keep thei Treg cells in stable. The endogenous regulatory T cells (n Treg) can inhibit T cell activation, thereby affecting T cells intoi Treg efficiency. We should remove the n Treg cells from the CD4+ T cells. Therefore, CD4+ T cells were isolated by negative selection, and then using the n Treg removing kit, we harvested the CD4+ CD62L+ naïve T cells fori Treg cell induction. For this purpose, naïve CD4+ cells were harvested, and then activated with anti-CD3/CD28 Dynabeads in the presence of IL-2, TGF-β1 and retinoic acid (RA) containing RPMI1640 medium. During the Tregs induction, the activated T cells were performed under low nutrient supplement (5% FBS) for three days then refreshed the cells into the full nutrient supplement (10% FBS) for another four days. The harvested cells were analyzed by flow cytometry method with fluorescence-conjugated CD-antibodies, including CD4, CD25, CD127, CD62L and FoxP3. Currently, the removal of n Treg cells could improve the efficiency of i Treg cell formation from 15% to 70-80% under this modified culture method (Fig.1). Further improvement of human peripheral blood regulatory T cell generation efficiency is our ongoing target. Our study showed that the combination of IL-2, TGF-β1 and RA in 3-day-nutrient-deprived medium could convert naïve CD4+ CD62L+ T cells to CD4+ CD25+ FoxP3+i Treg cells and stabilize FoxP3 expression in thei Treg cells efficiently. Further, we will develop thei Treg suppression assay to clarify the biological function ofi Tregs in vitro. GVHD mouse model will be established by using allogeneic HSCT to verify the function of i Tregs in vivo, too. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 21 (4) ◽  
pp. 587-594
Author(s):  
S. V. Popov ◽  
N. V. Sturov ◽  
N. V. Vorobyev ◽  
S. V. Khaidukov

The existing data on regulatory T cells (Tregs) in prostate cancer suggest that these cells may penetrate the prostate gland malignant tissue, suppressing antitumor immune response, thus promoting aggressive clinical course and low survival of the cancer patients. Evaluation of T cell subpopulations from the tumor microenvironment has shown that the number of CD4+Tregs is associated with inferior clinical prognosis. In particular, each additional CD4+Treg cell has been shown to cause a statistically significant increase in prostate cancer mortality by 12%, regardless of other clinical factors. There are several possible explanations for the increased infiltration of prostate cancer tissue with regulatory T cells. Firstly, malignant cells or tumor-associated macrophages are capable of secreting chemokine CCL22, which has an affinity for the CCR4 receptor expressed on Treg cells. Secondly, cytokines secreted by prostate tumors, such as TGF-β, may regulate the FoxP3 expression, thus expanding the Treg population. TGF-β, in turn, is a multifunctional cytokine that promotes survival and proliferation of transformed cells, including prostate epithelium, as evidenced by increased amounts in the patients with metastatic disease.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


Sign in / Sign up

Export Citation Format

Share Document