scholarly journals Spontaneously Resolved Atopic Dermatitis Shows Melanocyte and Immune Cell Activation Distinct From Healthy Control Skin

2021 ◽  
Vol 12 ◽  
Author(s):  
Katharina Rindler ◽  
Thomas Krausgruber ◽  
Felix M. Thaler ◽  
Natalia Alkon ◽  
Christine Bangert ◽  
...  

Atopic dermatitis (AD) typically starts in infancy or early childhood, showing spontaneous remission in a subset of patients, while others develop lifelong disease. Despite an increased understanding of AD, factors guiding its natural course are only insufficiently elucidated. We thus performed suction blistering in skin of adult patients with stable, spontaneous remission from previous moderate-to-severe AD during childhood. Samples were compared to healthy controls without personal or familial history of atopy, and to chronic, active AD lesions. Skin cells and tissue fluid obtained were used for single-cell RNA sequencing and proteomic multiplex assays, respectively. We found overall cell composition and proteomic profiles of spontaneously healed AD to be comparable to healthy control skin, without upregulation of typical AD activity markers (e.g., IL13, S100As, and KRT16). Among all cell types in spontaneously healed AD, melanocytes harbored the largest numbers of differentially expressed genes in comparison to healthy controls, with upregulation of potentially anti-inflammatory markers such as PLA2G7. Conventional T-cells also showed increases in regulatory markers, and a general skewing toward a more Th1-like phenotype. By contrast, gene expression of regulatory T-cells and keratinocytes was essentially indistinguishable from healthy skin. Melanocytes and conventional T-cells might thus contribute a specific regulatory milieu in spontaneously healed AD skin.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 542-542
Author(s):  
Peter Van Galen ◽  
Volker Hovestadt ◽  
Marc Wadsworth II ◽  
Travis Hughes ◽  
Gabriel Kenneth Griffin ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous disease with functionally diverse cells. While primitive leukemia cells are thought to be responsible for clonal expansion, other cell types may play roles in immune evasion and paracrine signaling. To analyze the complex AML ecosystem, we developed a technology for high throughput single-cell RNA-sequencing (scRNA-seq) combined with single-cell genotyping to capture mutations in cancer driver genes. We used this technology to parse normal and malignant hematopoietic systems. We profiled 38,410 cells from bone marrow (BM) aspirates from five healthy donors and 16 AML patients that span different WHO subtypes and cytogenetic abnormalities. Within the normal donors, we identified 15 diverse hematopoietic cell types demarcated by established markers such as CD34 (HSC/Progenitors), CD14 (monocytes) and CD3 (T-cells), confirming expected differentiation trajectories. To systematically distinguish between malignant and normal cell types within tumors, we developed a machine learning classifier that integrated scRNA-seq and single-cell genotyping data. Malignant cells were classified into six types: HSC-like, progenitor-like, granulocyte macrophage progenitor (GMP)-like, promonocyte-like, monocyte-like and dendritic-like cells. Each cell type was represented by at least 1,000 cells and identified in at least ten patients. To assess the significance of these six malignant cell types, we estimated their abundance in an independent cohort of 179 AMLs that were analyzed by bulk RNA-seq (TCGA). We found that the cell type composition of a tumor closely correlates to its underlying genetic lesions. For example, RUNX1-RUNX1T1 translocations are associated with GMP-like cells and TP53 mutations with undifferentiated cells (P < 0.001). NPM1+FLT3-ITD mutated tumors are enriched for more primitive cells compared to NPM1+FLT3-TKD mutants, which may relate to the worse outcomes of patients with FLT3-ITD mutations. The correspondence between genetic lesions and tumor cell type composition can guide strategies for genotype-specific therapies that target appropriate cellular states. Further investigation of primitive cells showed that gene expression programs associated with stemness (e.g. EGR1, MSI2) are mutually exclusive with myeloid priming (e.g. MPO, ELANE) in primitive cells of healthy donors. In contrast, these programs are often co-expressed within the same individual AML cells. When we applied our single cell-derived gene signatures to the TCGA dataset, stratification of these bulk expression profiles showed that patients with HSC-like progenitors had significantly poorer outcomes than patients with GMP-like progenitors (P < 0.0001). Aberrant co-expression of stemness and myeloid programs may underlie simultaneous self-renewal and proliferation, and expression of myeloid priming factors may provide a therapeutic window to target primitive AML cells while sparing normal HSCs. Examination of T-cells in our single-cell dataset showed that AML patients have fewer CD8+ cytotoxic T-lymphocytes within the CD3+ T-cell compartment compared to healthy controls, which was validated by immunohistochemistry on BM core biopsies (69% in healthy controls vs. 54% in AML, P < 0.05). We observed increased CD25+FOXP3+ T-regulatory cells in AML patients (1.2% in healthy controls vs. 3.6% in AML, P < 0.001), indicating an immunosuppressive tumor environment. To investigate mechanisms of immunosuppression, we used a T-cell activation bioassay that reports Nuclear Factor of Activated T-cells (NFAT). We compared the immunosuppressive function of different AML cell types, and found that CD14+ monocyte-like cells most effectively inhibit T-cell activation (P < 0.0001). The malignant status of these differentiated AML cells was confirmed by genotyping, and they express multiple factors associated with immunosuppression and T-cell engagement, including TIM-3 (HAVCR2), HVEM (TNFRSF14), CD155 (PVR) and HLA-DR. These results suggest that AMLs can differentiate into monocyte-like cells that suppress T-cell activation. In conclusion, we use novel technologies to parse heterogeneous cell states within the AML ecosystem. Our findings nominate strategies for precision therapies targeting AML progenitors or immunosuppressive functions of their differentiated progeny. Disclosures Pozdnyakova: Promedior, Inc.: Consultancy. Lane:N-of-one: Consultancy; Stemline Therapeutics: Research Funding.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 373
Author(s):  
Matanis Lobna ◽  
Eiza Nasren ◽  
Sabag Adi ◽  
Bejar Jacob ◽  
Gimenez-Arnau Ana Maria ◽  
...  

Background: Patients with chronic spontaneous urticaria (CSU), an autoimmune disorder, show increased skin expression of IL-17A and can benefit from treatment with the anti-IL-17A biologic secukinumab. The mechanisms that drive IL-17A expression in CSU are currently unknown, but may involve Semaphorin5A (Sema5A). Objective: To explore the expression, role, and effects of Sema5A in CSU and its link to IL-17A. Material and Methods: We investigated patients with CSU and healthy controls for skin expression of expressing peripheral T cells. Results: Sema5A was highly expressed in the skin of CSU patients as compared to healthy control skin. Both CD4+ T cells and mast cells in CSU skin expressed Sema5A, and many of them expressed both Sema5A and IL-17A. Patients with CSU had significantly higher rates of IL-17A-expressing CD4+ T cells as compared to healthy controls. Incubation with Sema5A increased the rates of IL-17A-expressing CD4+ T cells in healthy controls to CSU levels. Conclusion: Sema5A may drive the expression and effects of IL-17A in CSU. Further studies in larger cohorts are needed to confirm the role of Sema5A in the pathogenesis of CSU and to explore its potential as a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Polina Shindiapina ◽  
Maciej Pietrzak ◽  
Michal Seweryn ◽  
Eric McLaughlin ◽  
Xiaoli Zhang ◽  
...  

We report a first in-depth comparison of immune reconstitution in patients with HIV-related lymphoma following autologous hematopoietic cell transplant (AHCT) recipients (n=37, lymphoma, BEAM conditioning), HIV(-) AHCT recipients (n=30, myeloma, melphalan conditioning) at 56, 180, and 365 days post-AHCT, and 71 healthy control subjects. Principal component analysis showed that immune cell composition in HIV(+) and HIV(-) AHCT recipients clustered away from healthy controls and from each other at each time point, but approached healthy controls over time. Unsupervised feature importance score analysis identified activated T cells, cytotoxic memory and effector T cells [higher in HIV(+)], and naïve and memory T helper cells [lower HIV(+)] as a having a significant impact on differences between HIV(+) AHCT recipient and healthy control lymphocyte composition (p&lt;0.0033). HIV(+) AHCT recipients also demonstrated lower median absolute numbers of activated B cells and lower NK cell sub-populations, compared to healthy controls (p&lt;0.0033) and HIV(-) AHCT recipients (p&lt;0.006). HIV(+) patient T cells showed robust IFNγ production in response to HIV and EBV recall antigens. Overall, HIV(+) AHCT recipients, but not HIV(-) AHCT recipients, exhibited reconstitution of pro-inflammatory immune profiling that was consistent with that seen in patients with chronic HIV infection treated with antiretroviral regimens. Our results further support the use of AHCT in HIV(+) individuals with relapsed/refractory lymphoma.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 178-179
Author(s):  
S. Alehashemi ◽  
M. Garg ◽  
B. Sellers ◽  
A. De Jesus ◽  
A. Biancotto ◽  
...  

Background:Systemic Autoinflammatory diseases present with sterile inflammation. NOMID (Neonatal-Onset Multisystem Inflammatory Disease) is caused by gain-of-function mutations inNLRP3and excess IL-1 production, presents with fever, neutrophilic dermatosis, aseptic meningitis, hearing loss and eye inflammation; CANDLE (Chronic Atypical Neutrophilic Dermatosis, Lipodystrophy and Elevated Temperature) is caused by loss-of-function mutations in proteasome genes that lead to type-1 interferon signaling, characterized by fever, panniculitis, lipodystrophy, cytopenia, systemic and pulmonary hypertension and basal ganglia calcification. IL-1 blockers are approved for NOMID and JAK-inhibitors show efficacy in CANDLE treatment.Objectives:We used proteomic analysis to compare differentially expressed proteins in active NOMID and CANDLE compared to healthy controls before and after treatment, and whole blood bulk RNA seq to identify the immune cell signatures.Methods:Serum samples from active NOMID (n=12) and CANDLE (n=7) before and after treatment (table 1) and age matched healthy controls (HC) (n=7) were profiled using the SomaLogic platform (n=1125 proteins). Differentially expressed proteins in NOMID and CANDLE were ranked after non-parametric tests for unpaired (NOMIDp<0.05, CANDLE,p<0.1) and paired (p<0.05) analysis and assessed by enriched Gene Ontology pathways and network visualization. Whole blood RNA seq was performed (NOMID=7, CANDLE=7, Controls =5) and RPKM values were used to assess immune cells signatures.Table 1.Patient’s characteristicsNOMIDN=12, Male =6CANDLEN=7, Male =6AgeMedian (range)12 (2, 28)16 (3, 20)Ethnicity%White (Hispanic)80 (20)100 (30)GeneticsNLRP3mutation(2 Somatic, 10 Germline)mutations in proteasome component genes(1 digenic, 6 Homozygous/compound Heterozygous)Before treatmentAfter treatmentBefore treatmentAfter treatmentCRPMedian (range) mg/L52 (16-110)5 (0-23)5 (0-101)1 (0-4)IFN scoremedian (range)0NA328 (211-1135)3 (0-548)Results:Compared to control, 205 proteins (127 upregulated, 78 downregulated) were significantly different at baseline in NOMID, compared to 163 proteins (101 upregulated, and 62 downregulated) in CANDLE. 134 dysregulated proteins (85 upregulated, 49 downregulated) overlapped in NOMID and CANDLE (Figure 1). Pathway analysis identified neutrophil and monocyte chemotaxis signature in both NOMID and CANDLE. NOMID patients had neutrophilia and active neutrophils. CANDLE patients exhibited active neutrophils in whole blood RNA. Endothelial cell activation was the most prominent non-hematopoietic signature and suggest distinct endothelial cell dysregulation in NOMID and CANDLE. In NOMID, the signature included neutrophil transmigration (SELE) endothelial cell motility in response to angiogenesis (HGF, VEGF), while in CANDLE the endothelial signatures included extracellular matrix protein deposition (COL8A) suggesting increased vascular stiffness. CANDLE patients had higher expression of Renin, 4 out of 7 had hypertension, NOMID patients did not have hypertension. Treatment with anakinra and baricitinib normalized 143 and 142 of dysregulated proteins in NOMID and CANDLE respectively.Conclusion:Differentially expressed proteins in NOMID and CANDLE are consistent with innate immune cell activation. Distinct endothelial cell signatures in NOMID and CANDLE may provide mechanistic insight into differences in vascular phenotypes. Treatment with anakinra and Baricitinib in NOMID and CANDLE leaves 30% and 13% of the dysregulated proteins unchanged.Acknowledgments:This work was supported by Intramural Research atNational Institute of Allergy Immunology and Infectious Diseases of National Institutes of Health, Bethesda, Maryland, the Center of Human Immunology and was approved by the IRB.Disclosure of Interests:None declared


Author(s):  
Adjimon G Lokossou ◽  
Caroline Toudic ◽  
Phuong Trang Nguyen ◽  
Xavier Elisseeff ◽  
Amandine Vargas ◽  
...  

Abstract Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.


2015 ◽  
Vol 212 (13) ◽  
pp. 2289-2304 ◽  
Author(s):  
Binh L. Phong ◽  
Lyndsay Avery ◽  
Tina L. Sumpter ◽  
Jacob V. Gorman ◽  
Simon C. Watkins ◽  
...  

T cell (or transmembrane) immunoglobulin and mucin domain protein 3 (Tim-3) has attracted significant attention as a novel immune checkpoint receptor (ICR) on chronically stimulated, often dysfunctional, T cells. Antibodies to Tim-3 can enhance antiviral and antitumor immune responses. Tim-3 is also constitutively expressed by mast cells, NK cells and specific subsets of macrophages and dendritic cells. There is ample evidence for a positive role for Tim-3 in these latter cell types, which is at odds with the model of Tim-3 as an inhibitory molecule on T cells. At this point, little is known about the molecular mechanisms by which Tim-3 regulates the function of T cells or other cell types. We have focused on defining the effects of Tim-3 ligation on mast cell activation, as these cells constitutively express Tim-3 and are activated through an ITAM-containing receptor for IgE (FcεRI), using signaling pathways analogous to those in T cells. Using a variety of gain- and loss-of-function approaches, we find that Tim-3 acts at a receptor-proximal point to enhance Lyn kinase-dependent signaling pathways that modulate both immediate-phase degranulation and late-phase cytokine production downstream of FcεRI ligation.


2019 ◽  
Author(s):  
Anne-Marie Madore ◽  
Lucile Pain ◽  
Anne-Marie Boucher-Lafleur ◽  
Jolyane Meloche ◽  
Andréanne Morin ◽  
...  

AbstractBackgroundThe 17q12-21 locus is the most replicated association with asthma. However, no study had described the genetic mechanisms underlying this association considering all genes of the locus in immune cell samples isolated from asthmatic and non-asthmatic individuals.ObjectiveThis study takes benefit of samples from naïve CD4+ T cells and eosinophils isolated from the same 200 individuals to describe specific interactions between genetic variants, gene expression and DNA methylation levels for the 17q12-21 asthma locus.Methods and ResultsAfter isolation of naïve CD4+ T cells and eosinophils from blood samples, next generation sequencing was used to measure DNA methylation levels and gene expression counts. Genetic interactions were then evaluated considering genetic variants from imputed genotype data. In naïve CD4+ T cells but not eosinophils, 20 SNPs in the fourth and fifth haplotype blocks modulated both GSDMA expression and methylation levels, showing an opposite pattern of allele frequencies and expression counts in asthmatics compared to controls. Moreover, negative correlations have been measured between methylation levels of CpG sites located within the 1.5 kb region from the transcription start site of GSDMA and its expression counts.ConclusionAvailability of sequencing data from two key cell types isolated from asthmatic and non-asthmatic individuals allowed identifying a new gene in naïve CD4+ T cells that drives the association with the 17q12-21 locus, leading to a better understanding of the genetic mechanisms taking place in it.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
David M Patrick ◽  
Nestor de la Visitacion ◽  
Michelle J Ormseth ◽  
Charles Stein ◽  
Sean S Davies ◽  
...  

Essential hypertension and systemic lupus erythematosus (SLE) are devastating conditions that disproportionately affect women. SLE has heterogeneous manifestations and treatment is limited to the use of non-specific global immunosuppression. Importantly, there is an increased prevalence of hypertension in women with SLE compared to healthy controls. Isolevuglandins (IsoLGs) are oxidation products of fatty acids that form as a result of reactive oxygen species. These molecules adduct covalently to lysine residues of proteins. Adducted proteins are then presented as autoantigens to T-cells resulting in immune cell activation. Previous studies have shown an essential role of IsoLGs in immune cell activation and the development of hypertension in animal models. We hypothesize that isoLGs are important for the development of hypertension and systemic immune activation in SLE. We first examined isoLG adduct accumulation within monocytes of human subjects with SLE compared to healthy controls. By flow cytometry, we found marked accumulation of isoLG adducts within CD14 + monocytes (34.2% ± 12.4% vs 3.81% ± 2.1% of CD14 + , N = 10-11, P <0.05). We confirmed this increase in isoLG adducts by mass spectrometry. To determine a causative role of isoLG adducts in immune activation and hypertension in SLE, we employed the B6.SLE123 and NZBWF1 mouse models of SLE. Animals were treated with the isoLG scavenger 2-hydroxybenzylamine (2-HOBA) or vehicle beginning at 7 weeks and were sacrificed at 32 weeks of age. C57BL/6 and NZW were used as controls. Importantly, treatment with 2-HOBA attenuated blood pressure in both mouse models (systolic BP 136.2 ± 5.6 mmHg for B6.SLE123 vs 120.9 ± 4.46 mmHg for B6.SLE123 +2HOBA; 164.7 ± 24.4 mmHg for NZBWF1 vs 136.9 ± 14.9 mmHg for NZBWF1 +2HOBA, N = 6-8, P < 0.05). Moreover, treatment with 2-HOBA reduced albuminuria and renal injury in the B6.SLE123 model (albumin/creatinine ratio 33.8 ± 2.0 x 10 -2 μg/mg for B6.SLE123 vs 5.5 ± 0.9 x 10 -2 μg/mg for B6.SLE123 +2HOBA, N = 7-9, P < 0.05). Finally, immune cell accumulation in primary and secondary lymphoid organs is significantly attenuated by 2-HOBA. These studies suggest a critical role of isoLG adduct accumulation in both systemic immune activation and hypertension in SLE.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Kang ◽  
Marjan Nasr ◽  
Yiru Guo ◽  
Shizuka Uchida ◽  
Tyler Weirick ◽  
...  

Abstract Although cardiac mesenchymal cell (CMC) therapy mitigates post-infarct cardiac dysfunction, the underlying mechanisms remain unidentified. It is acknowledged that donor cells are neither appreciably retained nor meaningfully contribute to tissue regeneration—suggesting a paracrine-mediated mechanism of action. As the immune system is inextricably linked to wound healing/remodeling in the ischemically injured heart, the reparative actions of CMCs may be attributed to their immunoregulatory properties. The current study evaluated the consequences of CMC administration on post myocardial infarction (MI) immune responses in vivo and paracrine-mediated immune cell function in vitro. CMC administration preferentially elicited the recruitment of cell types associated with innate immunity (e.g., monocytes/macrophages and neutrophils). CMC paracrine signaling assays revealed enhancement in innate immune cell chemoattraction, survival, and phagocytosis, and diminished pro-inflammatory immune cell activation; data that identifies and catalogues fundamental immunomodulatory properties of CMCs, which have broad implications regarding the mechanism of action of CMCs in cardiac repair.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xueyi Zhu ◽  
Jie Cui ◽  
La Yi ◽  
Jingjing Qin ◽  
Wuniqiemu Tulake ◽  
...  

Asthma is associated with innate and adaptive immunity mediated by immune cells. T cell or macrophage dysfunction plays a particularly significant role in asthma pathogenesis. Furthermore, crosstalk between them continuously transmits proinflammatory or anti-inflammatory signals, causing the immune cell activation or repression in the immune response. Consequently, the imbalanced immune microenvironment is the major cause of the exacerbation of asthma. Here, we discuss the role of T cells, macrophages, and their interactions in asthma pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document