scholarly journals Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1

2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Cai ◽  
Yichi Zhang ◽  
Jian Wang ◽  
Jinyang Gu

Classically activated M1 macrophages and alternatively activated M2 macrophages are two polarized subsets of macrophages at the extreme ends of a constructed continuum. In the field of cancer research, M2 macrophage reprogramming is defined as the repolarization of pro-tumoral M2 to anti-tumoral M1 macrophages. It is known that colony-stimulating factor 1 (CSF1)/CSF1 receptor (CSF1R) and CSF2/CSF2R signaling play important roles in macrophage polarization. Targeting CSF1/CSF1R for M2 macrophage reprogramming has been widely performed in clinical trials for cancer therapy. Other targets for M2 macrophage reprogramming include Toll-like receptor 7 (TLR7), TLR8, TLR9, CD40, histone deacetylase (HDAC), and PI3Kγ. Although macrophages are involved in innate and adaptive immune responses, M1 macrophages are less effective at phagocytosis and antigen presenting, which are required properties for the activation of T cells and eradication of cancer cells. Similar to T and dendritic cells, the “functionally exhausted” status might be attributed to the high expression of programmed death-ligand 1 (PD-L1) or programmed cell death protein 1 (PD-1). PD-L1 is expressed on both M1 and M2 macrophages. Macrophage reprogramming from M2 to M1 might increase the expression of PD-L1, which can be transcriptionally activated by STAT3. Macrophage reprogramming or PD-L1/PD-1 blockade alone is less effective in the treatment of most cancers. Since PD-L1/PD-1 blockade could make up for the defect in macrophage reprogramming, the combination of macrophage reprogramming and PD-L1/PD-1 blockade might be a novel treatment strategy for cancer therapy.

Author(s):  
Yong Fan ◽  
Yanjie Hao ◽  
Dai Gao ◽  
Lan Gao ◽  
Guangtao Li ◽  
...  

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages induced endothelial cell apoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell. These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Lu Liu ◽  
Yuqing Wu ◽  
Bingwei Wang ◽  
Yuying Jiang ◽  
Lin Lin ◽  
...  

AbstractThe decrease of neurotransmitter dopamine (DA) levels in the intestine is closely related to the development of inflammatory bowel disease (IBD). However, the functional relevance and underlying mechanistic basis of the effects of DA signaling on IBD remains unclear. Here, we observed that the DRD5 receptor is highly expressed in colonic macrophages, and the deficiency of DA-DRD5 signaling exacerbated experimental colitis. Moreover, DA-DRD5 signaling can inhibit M1 by negatively regulating NF-κB signaling but promote M2 macrophage polarization through activation of the CREB pathway, respectively. The deficiency of DRD5 signaling increased colonic M1 macrophages but reduced M2 cells during colitis. Additionally, the administration of a D1-like agonist that has a higher affinity to DRD5 can attenuate the colitogenic phenotype of mice. Collectively, these findings provide the first demonstration of DA-DRD5 signaling in colonic macrophages controlling the development of colitis by regulating M1/M2 macrophage polarization.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Carmen M. Sandoval Pacheco ◽  
Gabriela V. Araujo Flores ◽  
Kadir Gonzalez ◽  
Claudia M. de Castro Gomes ◽  
Luiz F. D. Passero ◽  
...  

Macrophages play important roles in the innate and acquired immune responses against Leishmania parasites. Depending on the subset and activation status, macrophages may eliminate intracellular parasites; however, these host cells also can offer a safe environment for Leishmania replication. In this sense, the fate of the parasite may be influenced by the phenotype of the infected macrophage, linked to the subtype of classically activated (M1) or alternatively activated (M2) macrophages. In the present study, M1 and M2 macrophage subsets were analyzed by double-staining immunohistochemistry in skin biopsies from patients with American cutaneous leishmaniasis (ACL) caused by L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis ,and L. (L.) infantum chagasi. High number of M1 macrophages was detected in nonulcerated cutaneous leishmaniasis (NUCL) caused by L. (L.) infantum chagasi ( M 1 = 112 ± 12 , M 2 = 43 ± 12 cells/mm2). On the other side, high density of M2 macrophages was observed in the skin lesions of patients with anergic diffuse cutaneous leishmaniasis (ADCL) ( M 1 = 195 ± 25 , M 2 = 616 ± 114 ), followed by cases of localized cutaneous leishmaniasis (LCL) caused by L. (L.) amazonensis ( M 1 = 97 ± 24 , M 2 = 219 ± 29 ), L. (V.) panamensis ( M 1 = 71 ± 14 , M 2 = 164 ± 14 ), and L. (V.) braziliensis ( M 1 = 50 ± 13 , M 2 = 53 ± 10 ); however, low density of M2 macrophages was observed in NUCL. The data presented herein show the polarization of macrophages in skin lesions caused by different Leishmania species that may be related with the outcome of the disease.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenbo Zhao ◽  
Junxian Hu ◽  
Qingyi He

Abstract Background When multicystic vesicles (precursors of exosomes) are formed in cells, there are two results. One is decomposition by lysosomes, and the other is the generation of exosomes that are transported out through the transmembrane. On the other hand, M2 macrophages promote the formation of local vascularization and provide necessary support for the repair of bone defects. To provide a new idea for the treatment of bone defects, the purpose of our study was to investigate the effect of WKYMVm (Trp-Lys-Tyr-Met-Val-D-Met-NH2) peptide on the secretion of exosomes from murine bone marrow-derived MSCs (mBMSCs) and the effect of exosomes on the polarization of M2 macrophages. Methods The WKYMVm peptide was used to activate the formyl peptide receptor 2 (FPR2) pathway in mBMSCs. First, we used Cell Counting Kit-8 (CCK-8) to detect the cytotoxic effect of WKYMVm peptide on mBMSCs. Second, we used western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of interferon stimulated gene 15 (ISG15) and transcription factor EB (TFEB) in mBMSCs. Then, we detected lysosomal activity using a lysozyme activity assay kit. Third, we used an exosome extraction kit and western blotting to detect the content of exosomes secreted by mBMSCs. Fourth, we used immunofluorescence and western blotting to count the number of polarized M2 macrophages. Finally, we used an inhibitor to block miRNA-146 in exosomes secreted by mBMSCs and counted the number of polarized M2 macrophages. Results We first found that the WKYMVm peptide had no toxic effect on mBMSCs at a concentration of 1 μmol/L. Second, we found that when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs, ISG15 and TFEB expression was decreased, leading to increased secretion of exosomes. We also found that lysosomal activity was decreased when the FPR2 pathway was activated by the WKYMVm peptide in mBMSCs. Third, we demonstrated that exosomes secreted by mBMSCs promote the polarization of M2 macrophages. Moreover, all these effects can be blocked by the WRWWWW (WRW4, H-Trp-Arg-Trp-Trp-Trp-Trp-OH) peptide, an inhibitor of the FPR2 pathway. Finally, we confirmed the effect of miRNA-146 in exosomes secreted by mBMSCs on promoting the polarization of M2 macrophages. Conclusion Our findings demonstrated the potential value of the WKYMVm peptide in promoting the secretion of exosomes by mBMSCs and eventually leading to M2 macrophage polarization. We believe that our study could provide a research basis for the clinical treatment of bone defects.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Sumeet A Solanki ◽  
Guillermo Vazquez

Background: Macrophage apoptosis plays a critical role in progression of atherosclerosis. Previous studies suggest that M1 and M2 macrophage phenotypes dominate atherosclerosis. Recently, we showed that advanced lesions in the aortic root of Apoe -/- mice transplanted with bone marrow deficient in the calcium-permeable channel Transient Receptor Potential Canonical 3 (TRPC3) are characterized by reduced areas of necrosis and less apoptotic macrophages. However, the donor mice used in these studies had global deficiency of TRPC3, raising the question whether the observed phenotype was also contributed by TRPC3-deficient non-myeloid cells which could undermine the true impact of macrophage deletion of TRPC3. To address this important question, we generated mice with macrophage-specific loss of TRPC3 function (MacTrpc3 -/- ). Methods & results: 13 six week-old female Ldlr -/- mice were irradiated and transplanted with Ldlr -/- (control) or MacTrpc3 -/- Ldlr -/- (experimental) bone marrow and kept on high fat diet for 14 weeks. At the end of the diet period, aortic roots were sectioned and processed for atherosclerotic lesion analysis. Total lesion size (H&E), neutral lipid (Oil Red O) and macrophage content (CD68 staining) were not different between groups. However, we found a 1.7 fold decrease (P=0.01) in percent necrotic area in advanced lesions of MacTrpc3 -/- Ldlr -/- mice (23.12 ± 2.07%, n=10) compared to controls (39.63 ± 5.93%, n=10). Using in situ TUNEL we found that MacTrpc3 -/- Ldlr -/- lesions have less apoptotic cells compared to controls, and these overlapped with CD68 + areas. Using iNOS and mannose receptor as markers for M1 and M2 macrophages, respectively, we found that both subsets overlapped with CD68 + and TUNEL + positive areas, with no differences between groups (n=5). Previously, we showed that M1, but not M2 macrophages derived from MacTrpc3 -/- mice, had reduced apoptosis. This suggests that reduced plaque necrosis of MacTrpc3 -/- Ldlr -/- mice may be due to reduced apoptosis of M1 macrophages. In sum, these in vivo studies indicate that macrophage-specific deficiency of TRPC3 has a genuine beneficial effect on advanced atherosclerotic plaques, reducing apoptosis and necrosis, probably due to a selective effect of TRPC3 on M1 macrophages.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yong You ◽  
Xiaoqing Zhang ◽  
Xiao Wang ◽  
Dan Yue ◽  
Fanxiang Meng ◽  
...  

This study was to identify functions of ILC2, a newly found innate lymphoid cell which mainly locates in mucosa organs like lungs and intestines, in IBD. We injected rIL-33 protein to C57/BL6 mouse to explore how IL-33 induces ILC2 proliferation. The results showed that ILC2 reached a proliferation peak at day 5 and expressed multiple surface markers like CD127, C-kit, CD69, CD44, ST2, CD27, DR3, MHCII, and CD90.2. ILC2 also expressed high quantity of IL-13 and IL-5 and few IL-17A which indicates a potentially immunological function in IBD development. Afterwards, we transferred sort purified ILC2 to Rag1-/- mouse given DSS to induce acute colitis in order to explore the innate function of ILC2. Data showed that ILC2 alleviates DSS-induced acute innate colitis by repairing epithelial barrier and restore body weight. Furthermore, we found that ILC2 can cause macrophages polarizing to M2 macrophages in the gut. Therefore, we concluded that ILC2 played a therapeutic role in mouse acute colitis.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi259-vi259
Author(s):  
Lili Chen ◽  
Ming Li

Abstract Guanylate binding protein 1 (GBP1) is an interferon-inducible large GTPase which plays a key role in tumor development, but the molecular mechanism is poorly understood. Here we investigated whether GBP1 could influence the tumor microenvironment in glioblastoma, the most common and malignant brain tumor. We found that forced expression of GBP1 in glioblastoma cells induced macrophage polarization toward an M2 phenotype via upregulating Chemokine (C-C motif) ligand 2 (CCL2). CCL2 acted via its receptor C-C chemokine receptor 2 (CCR2) to enhance macrophage cell migration in vitro. The M2 macrophages in turn promoted glioblastoma cell proliferation and migration. The orthotopic mouse model showed that GBP1 recruited M2 macrophages into tumor to promote glioblastoma progression, and targeting CCL2/CCR2 signaling axis with a small molecule inhibitor RS504393 led to decreased macrophage attraction and M2 polarization and a significant tumor growth retardation and prolonged survival of tumor-bearing mice. Clinically, GBP1 expression positively correlated with M2 macrophage numbers and CCL2 expression in glioblastoma. Taken together, our results reveal that GBP1 modulates the tumor immune microenvironment through CCL2 induction to promote glioblastoma infiltrating growth, and targeting tumor-associated macrophages may represent a new therapeutic strategy against glioblastoma.


2020 ◽  
pp. 153537022097232
Author(s):  
Lisha Li ◽  
Xuemin Qiu ◽  
Na Zhang ◽  
Yan Sun ◽  
Yan Wang ◽  
...  

A loss-of-function mutation in the Lrp5 gene in mice leads to a low bone mass disorder due to the inhibition of the canonical Wnt signaling pathway; however, the role of bone marrow microenvironment in mice with this mutation remains unclear. In this study, we evaluated proliferation and osteogenic potential of mouse osteoblasts using the MTT assay and Alizarin red staining. The levels of alkaline phosphatase, tartrate-resistant acid phosphatase, and adiponectin in culture supernatants were measured using the enzyme-linked immunosorbent assay. Osteoclast bone resorbing activity was evaluated by toluidine staining and the number and area of bone resorption pits were determined. We observed increased osteogenesis in osteoblasts co-cultured with the BM-derived myeloid cells compared to the osteoblasts cultured alone. Mice with global Lrp5 deletion had a relatively higher bone density compared to the mice carrying osteoblast/osteocyte-specific Lrp5 deletion. An increased frequency of M2 macrophages and reduced expression of inflammatory cytokines were detected in the myeloid cells derived from the bone marrow of mice with global Lrp5 deletion. Higher adipogenic potential and elevated levels of adiponectin in the global Lrp5 deletion mice contributed to the preferential M2 macrophage polarization. Here, we identified a novel systemic regulatory mechanism of bone formation and degradation in mice with global Lrp5 deletion. This mechanism depends on a crosstalk between the adipocytes and M2 macrophages in the bone marrow and is responsible for partly rescuing osteopenia developed as a result of decreased Wnt signaling.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2999
Author(s):  
Joseph Muñoz ◽  
Neda S. Akhavan ◽  
Amy P. Mullins ◽  
Bahram H. Arjmandi

Over 200 million people suffer from osteoporosis worldwide. Individuals with osteoporosis have increased rates of bone resorption while simultaneously having impaired osteogenesis. Most current treatments for osteoporosis focus on anti-resorptive methods to prevent further bone loss. However, it is important to identify safe and cost-efficient treatments that not only inhibit bone resorption, but also stimulate anabolic mechanisms to upregulate osteogenesis. Recent data suggest that macrophage polarization may contribute to osteoblast differentiation and increased osteogenesis as well as bone mineralization. Macrophages exist in two major polarization states, classically activated macrophages (M1) and alternatively activated macrophage (M2) macrophages. The polarization state of macrophages is dependent on molecules in the microenvironment including several cytokines and chemokines. Mechanistically, M2 macrophages secrete osteogenic factors that stimulate the differentiation and activation of pre-osteoblastic cells, such as mesenchymal stem cells (MSC’s), and subsequently increase bone mineralization. In this review, we cover the mechanisms by which M2 macrophages contribute to osteogenesis and postulate the hypothesis that regulating macrophage polarization states may be a potential treatment for the treatment of osteoporosis.


2019 ◽  
Vol 20 (19) ◽  
pp. 4966 ◽  
Author(s):  
Tedesco ◽  
Scattolini ◽  
Albiero ◽  
Bortolozzi ◽  
Avogaro ◽  
...  

Macrophages are highly plastic and dynamic cells that exert much of their function through phagocytosis. Phagocytosis depends on a coordinated, finely tuned, and compartmentalized regulation of calcium concentrations. We examined the role of mitochondrial calcium uptake and mitochondrial calcium uniporter (MCU) in macrophage polarization and function. In primary cultures of human monocyte-derived macrophages, calcium uptake in mitochondria was instrumental for alternative (M2) macrophage polarization. Mitochondrial calcium uniporter inhibition with KB-R7943 or MCU knockdown, which prevented mitochondrial calcium uptake, reduced M2 polarization, while not affecting classical (M1) polarization. Challenging macrophages with E. coli fragments induced spikes of mitochondrial calcium concentrations, which were prevented by MCU inhibition or silencing. In addition, mitochondria remodelled in M2 macrophages during phagocytosis, especially close to sites of E. coli internalization. Remarkably, inhibition or knockdown of MCU significantly reduced the phagocytic capacity of M2 macrophages. KB-R7943, which also inhibits the membrane sodium/calcium exchanger and Complex I, reduced mitochondria energization and cellular ATP levels, but such effects were not observed with MCU silencing. Therefore, phagocytosis inhibition by MCU knockdown depended on the impaired mitochondrial calcium buffering rather than changes in mitochondrial and cellular energy status. These data uncover a new role for MCU in alternative macrophage polarization and phagocytic activity.


Sign in / Sign up

Export Citation Format

Share Document