scholarly journals Secretome Profiling of Atlantic Salmon Head Kidney Leukocytes Highlights the Role of Phagocytes in the Immune Response to Soluble β-Glucan

2021 ◽  
Vol 12 ◽  
Author(s):  
Dimitar B. Iliev ◽  
Guro Strandskog ◽  
Mehrdad Sobhkhez ◽  
Jack A. Bruun ◽  
Jorunn B. Jørgensen

β‐Glucans (BG) are glucose polymers which are produced in bacteria and fungi but not in vertebrate organisms. Being recognized by phagocytic leukocytes including macrophages and neutrophils through receptors such as dectin-1 and Complement receptor 3 (CR3), the BG are perceived by the innate immune system of vertebrates as foreign substances known as Pathogen Associated Molecular Patterns (PAMPs). The yeast-derived BG has been recognized for its potent biological activity and it is used as an immunomodulator in human and veterinary medicine. The goal of the current study was to characterize the immunostimulatory activity of soluble yeast BG in primary cultures of Atlantic salmon (Salmo salar) head kidney leukocytes (HKLs) in which phagocytic cell types including neutrophils and mononuclear phagocytes predominate. The effect of BG on the secretome of HKL cultures, including secretion of extracellular vesicles (EVs) and soluble protein55s was characterized through western blotting and mass spectrometry. The results demonstrate that, along with upregulation of proinflammatory genes, BG induces secretion of ubiquitinated proteins (UbP), MHCII-containing EVs from professional antigen presenting cells as well as proteins derived from granules of polymorphonuclear granulocytes (PMN). Among the most abundant proteins identified in BG-induced EVs were beta-2 integrin subunits, including CD18 and CD11 homologs, which highlights the role of salmon granulocytes and mononuclear phagocytes in the response to soluble BG. Overall, the current work advances the knowledge about the immunostimulatory activity of yeast BG on the salmon immune system by shedding light on the effect of this PAMP on the secretome of salmon leukocytes.

2020 ◽  
Author(s):  
Alexander C. West ◽  
Yasutaka Mizoro ◽  
Shona H. Wood ◽  
Louise M. Ince ◽  
Marianne Iversen ◽  
...  

AbstractAnadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, the extending photoperiods of spring stimulates smoltification, typified by radical reprogramming of the gill from an ion-absorbing organ to ion-excreting organ. Prior work has highlighted the role of specialized “mitochondrion-rich” cells in delivering this phenotype. However, transcriptomic studies identify thousands of smoltification-driven differentially regulated genes, indicating that smoltification causes a multifaceted, multicellular change; but direct evidence of this is lacking.Here, we use single-nuclei RNAseq to characterize the Atlantic salmon gill during smoltification and seawater transfer. We identify 20 distinct clusters of nuclei, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-induced changes in gene expression. We also show how cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify a reduction of several immune-related cells. Overall, our results provide unrivaled detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming directly preceding seawater entry.


‘Infection and immunity’ considers the response of the body to pathogens, such as bacteria, viruses, prions, fungi, and parasites, which are discussed in terms of their nature, life cycle, and modes of infection. The role of the immune system in defence against infection is discussed, including innate and adaptive (acquired) immunity, antigens, the major histocompatibility complex, and the different cell types involved (antigen-presenting cells, T-cells, and B-cells). The mechanisms and cellular basis of inflammation are considered, as are post-infection repair mechanisms, and pathologies of the immune system such as hypersensitivity, autoimmunity and transplantations, and immunodeficiency (both primary and secondary to other diseases).


2006 ◽  
Vol 26 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Janusz Witowski ◽  
Achim Jörres

Fibroblasts have been traditionally viewed as providing little more than a structural lattice for other cell types. However, recent data indicate that fibroblasts play a key and early role in many pathophysiological processes, including inflammation, fibrosis, and neoplasia. Moreover, depending on the anatomical location, fibroblasts display significant functional heterogeneity. Therefore, it is important to study the subpopulation of fibroblasts derived exactly from the organ of interest rather than to extrapolate the observations made in other fibroblast subsets. Cell culture provides a powerful tool for studying the role of fibroblasts in various contexts. In this review, we describe procedures for establishing and identifying primary cultures of human peritoneal fibroblasts. We also briefly discuss the potential involvement of peritoneal fibroblasts in peritoneal pathology.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mariagrazia Valentini ◽  
Alessia Piermattei ◽  
Gabriele Di Sante ◽  
Giuseppe Migliara ◽  
Giovanni Delogu ◽  
...  

A close relationship exists between gut microbiota and immune responses. An imbalance of this relationship can determine local and systemic immune diseases. In fact the immune system plays an essential role in maintaining the homeostasis with the microbiota that normally resides in the gut, while, at the same time, the gut microbiota influences the immune system, modulating number and function of effector and regulatory T cells. To achieve this aim, mutual regulation between immune system and microbiota is achieved through several mechanisms, including the engagement of toll-like receptors (TLRs), pathogen-specific receptors expressed on numerous cell types. TLRs are able to recognize ligands from commensal or pathogen microbiota to maintain the tolerance or trigger the immune response. In this review, we summarize the latest evidences about the role of TLRs expressed in adaptive T cells, to understand how the immune system promotes intestinal homeostasis, fights invasion by pathogens, and is modulated by the intestinal microbiota.


2021 ◽  
Author(s):  
Robert Mukiibi ◽  
Carolina Peñaloza ◽  
Alejandro Gutierrez ◽  
José M. Yáñez ◽  
Ross D. Houston ◽  
...  

Salmon rickettsial septicaemia (SRS), caused by the intracellular bacteria Piscirickettsia Salmonis, generates significant mortalities to farmed Atlantic salmon, particularly in Chile. Due to its economic importance, a wealth of research has focussed on the biological mechanisms underlying pathogenicity of P. salmonis, the host response, and genetic variation in host resistance. DNA methylation is a fundamental epigenetic mechanism that influences almost every biological process via the regulation of gene expression and plays a key role in the response of an organism to stimuli. In the current study, the role of head kidney and liver DNA methylation in the response to P. salmonis infection was investigated in a commercial Atlantic salmon population. A total of 66 salmon were profiled using reduced representation bisulphite sequencing (RRBS), with head kidney and liver methylomes compared between infected animals (3 and 9 days post infection) and uninfected controls. These included groups of salmon with divergent (high or low) breeding values for resistance to P. salmonis infection, to examine the influence of genetic resistance. Head kidney and liver showed organ-specific global methylation patterns, but with similar distribution of methylation across gene features. Integration of methylation with RNA-Seq data revealed that methylation levels predominantly showed a negative correlation with gene expression, although positive correlations were also observed. Methylation within the first exon showed the strongest negative correlation with gene expression. A total of 911 and 813 differentially methylated CpG sites were identified between infected and control samples in the head kidney at 3 and 9 days respectively, whereas only 30 and 44 sites were differentially methylated in the liver. Differential methylation in the head kidney was associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. We also identified 113 and 48 differentially methylated sites between resistant and susceptible fish in the head kidney and liver respectively. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases, and in particular reveal key immunological functions regulated by methylation in Atlantic salmon in response to P. salmonis.


1991 ◽  
Vol 69 (12) ◽  
pp. 3105-3108 ◽  
Author(s):  
Martin P. Komourdjian ◽  
Richard L. Saunders

Examination of pituitaries from two populations of Atlantic salmon (Salmo salar) parr held under natural photoperiods revealed at least two histologically distinct cell types. One type has fine granules with affinity for lead hematoxylin (PIPbH). Another type, hitherto believed to be absent in salmonids, has larger granules which are Schiff-positive (PIPAS). These cells are significantly (P < 0.05) shorter and narrower and have significantly smaller nuclei (P < 0.05) than the PIPbH type. No evidence was found for ascribing to the PIPAS cells the functions assigned to them in other species: melanophore control and reproduction. However, PIPAS granules became evident only during fall-winter, when the smolting process begins. The incidence of these cells rose and then declined sharply during this period, suggesting a possible role in some aspect of smoltification. While the role of these PIPAS cells deserves further study, their presence is in itself important from an evolutionary point of view.


Reproduction ◽  
2007 ◽  
Vol 133 (4) ◽  
pp. 743-751 ◽  
Author(s):  
S C Mizrak ◽  
F Renault-Mihara ◽  
M Párraga ◽  
J Bogerd ◽  
H J G van de Kant ◽  
...  

Phosphoprotein enriched in astrocytes (PEA-15) is a 15 kDa acidic serine-phosphorylated protein expressed in different cell types, especially in the CN. We initially detected the expression of PEA-15 in primary cultures of Sertoli cells. To assess the presence and localization of PEA-15 in the mouse testis, we studied the expression pattern of the PEA-15 protein by immunohistochemistry and mRNA byin situhybridization. Both the protein and the mRNA of PEA-15 were localized in the cytoplasm of Sertoli cells, all types of spermatogonia, and spermatocytes up till zygotene phase of the meiotic prophase. Subsequently, with ongoing development of the spermatocytes, the expression decreased and was very low in the cytoplasm of diplotene spermatocytes. To analyze the possible role of PEA-15 in the developing testis, null mutants for PEA-15 were examined. As the PEA-15 C terminus contains residues for ERK binding, we studied possible differences between the localization of the ERK2 protein in wild type (WT) andPEA-15−/−mice. In the WT testis, ERK2 was localized in the cytoplasm of Sertoli cells, B spermatogonia, preleptotene, leptotene, and zygotene spermatocytes, whereas in the KO testis, ERK2 was primarily localized in the nuclei of these cells and only little staining remained in the cytoplasm. Moreover, in PEA-15-deficient mice, significantly increased numbers of apoptotic spermatocytes were found, indicating an anti-apoptotic role of PEA-15 during the meiotic prophase. The increased numbers of apoptotic spermatocytes were not found at a specific step in the meiotic prophase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole C. Smith ◽  
Navaneethaiyer Umasuthan ◽  
Surendra Kumar ◽  
Nardos T. Woldemariam ◽  
Rune Andreassen ◽  
...  

The Atlantic salmon (Salmo salar) is an economically important fish, both in aquaculture and in the wild. In vertebrates, macrophages are some of the first cell types to respond to pathogen infection and disease. While macrophage biology has been characterized in mammals, less is known in fish. Our previous work identified changes in the morphology, phagocytic ability, and miRNA profile of Atlantic salmon adherent head kidney leukocytes (HKLs) from predominantly “monocyte-like” at Day 1 of in vitro culture to predominantly “macrophage-like” at Day 5 of culture. Therefore, to further characterize these two cell populations, we examined the mRNA transcriptome profile in Day 1 and Day 5 HKLs using a 44K oligonucleotide microarray. Large changes in the transcriptome were revealed, including changes in the expression of macrophage and immune-related transcripts (e.g. csf1r, arg1, tnfa, mx2), lipid-related transcripts (e.g. fasn, dhcr7, fabp6), and transcription factors involved in macrophage differentiation and function (e.g. klf2, klf9, irf7, irf8, stat1). The in silico target prediction analysis of differentially expressed genes (DEGs) using miRNAs known to change expression in Day 5 HKLs, followed by gene pathway enrichment analysis, supported that these miRNAs may be involved in macrophage maturation by targeting specific DEGs. Elucidating how immune cells, such as macrophages, develop and function is a key step in understanding the Atlantic salmon immune system. Overall, the results indicate that, without the addition of exogenous factors, the adherent HKL cell population differentiates in vitro to become macrophage-like.


2017 ◽  
Vol 313 (1) ◽  
pp. C11-C26 ◽  
Author(s):  
Aline M. S. Yamashita ◽  
Maryana T. C. Ancillotti ◽  
Luciana P. Rangel ◽  
Marcio Fontenele ◽  
Cicero Figueiredo-Freitas ◽  
...  

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor – GSNORi – or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
R. Cortés ◽  
M. Teles ◽  
R. Trídico ◽  
L. Acerete ◽  
L. Tort

Cortisol is a key hormone in the fish stress response with a well-known ability to regulate several physiological functions, including energy metabolism and the immune system. However, data concerning cortisol effects on fish innate immune system using a more controlled increase in cortisol levels isolated from any other stress related signaling is scarce. The present study describes the effect of doses of cortisol corresponding to acute and chronic levels on the complement and lysozyme activity in plasma of the rainbow trout (Oncorhynchus mykiss). We also evaluated the effects of these cortisol levels (from intraperitoneally implanted hydrocortisone) on the mRNA levels quantified by RT-qPCR of selected key immune-related genes in the liver, head kidney, and spleen. For that purpose, 60 specimens of rainbow trout were divided in to two groups: a control group injected with a coconut oil implant and another group injected with the same implant and cortisol (50 μg cortisol/g body weight). Our results demonstrate the role of cortisol as a modulator of the innate immune response without the direct contribution of other stress axes. Our results also show a relationship between the complement and lysozyme activity in plasma and mRNA levels in liver, supporting the important role of this organ in producing these immune system proteins after a rise of cortisol in the fish plasma.


Sign in / Sign up

Export Citation Format

Share Document