scholarly journals The Immune Landscape of Human Primary Lung Tumors Is Th2 Skewed

2021 ◽  
Vol 12 ◽  
Author(s):  
Astri Frafjord ◽  
Linn Buer ◽  
Clara Hammarström ◽  
Henrik Aamodt ◽  
Per Reidar Woldbæk ◽  
...  

Tumor-specific T helper (Th) cells have a central role in the immune response against cancer. However, there exist distinct Th cell subsets with very different and antagonizing properties. Some Th subsets such as Th1 protect against cancer, while others (Th2, T regulatory/Treg) are considered detrimental or of unknown significance (T follicular helper/Tfh, Th17). The Th composition of human solid tumors remains poorly characterized. Therefore, we established a four-color multiplex chromogenic immunohistochemical assay for detection of Th1, Th2, Th17, Tfh and Treg cells in human tumor sections. The method was used to analyze resected primary lung tumors from 11 patients with non-small cell lung cancer (NSCLC). Four microanatomical regions were investigated: tumor epithelium, tumor stroma, peritumoral tertiary lymphoid structures (TLS) and non-cancerous distal lung tissue. In tumor epithelium and stroma, most CD4+ T cells identified had either a Th2 (GATA-3+CD3+CD8-) or Treg (FOXP3+CD3+CD8-) phenotype, whereas only low numbers of Th1, Th17, and Tfh cells were observed. Similarly, Th2 was the most abundant Th subset in TLS, followed by Treg cells. In sharp contrast, Th1 was the most frequently detected Th subset in non-cancerous lung tissue from the same patients. A higher Th1:Th2 ratio in tumor stroma was found to be associated with increased numbers of intratumoral CD8+ T cells. The predominance of Th2 and Treg cells in both tumor stroma and tumor epithelium was consistent for all the 11 patients investigated. We conclude that human primary NSCLC tumors are Th2-skewed and contain numerous Treg cells. If human tumors are Th2-skewed, as our data in NSCLC suggest, reprogramming the type of immune response from a detrimental Th2 to a beneficial Th1 may be critical to increase the response rate of immunotherapy.

2011 ◽  
Vol 120 (12) ◽  
pp. 515-524 ◽  
Author(s):  
Carol Pridgeon ◽  
Laurence Bugeon ◽  
Louise Donnelly ◽  
Ursula Straschil ◽  
Susan J. Tudhope ◽  
...  

The regulation of human Th17 cell effector function by Treg cells (regulatory T-cells) is poorly understood. In the present study, we report that human Treg (CD4+CD25+) cells inhibit the proliferative response of Th17 cells but not their capacity to secrete IL (interleukin)-17. However, they could inhibit proliferation and cytokine production by Th1 and Th2 cells as determined by IFN-γ (interferon-γ) and IL-5 biosynthesis. Currently, as there is interest in the role of IL-17-producing cells and Treg cells in chronic inflammatory diseases in humans, we investigated the presence of CD4+CD25+ T-cells and IL-17 in inflammation in the human lung. Transcripts for IL-17 were expressed in mononuclear cells and purified T-cells from lung tissue of patients with chronic pulmonary inflammation and, when activated, these cells secrete soluble protein. The T-cell-specific transcription factors RORCv2 (retinoic acid-related orphan receptor Cv2; for Th17) and FOXP3 (forkhead box P3; for Treg cells) were enriched in the T-cell fraction of lung mononuclear cells. Retrospective stratification of the patient cohort into those with COPD (chronic obstructive pulmonary disease) and non-COPD lung disease revealed no difference in the expression of IL-17 and IL-23 receptor between the groups. We observed that CD4+CD25+ T-cells were present in comparable numbers in COPD and non-COPD lung tissue and with no correlation between the presence of CD4+CD25+ T-cells and IL-17-producing cells. These results suggest that IL-17-expressing cells are present in chronically inflamed lung tissue, but there is no evidence to support this is due to the recruitment or expansion of Treg cells.


2020 ◽  
Author(s):  
Xiaoxia Guo ◽  
Fang Du ◽  
Qin Liu ◽  
Yan Guo ◽  
Qingbing Wang ◽  
...  

Abstract Background This study intends to investigate the immunological effects of tumor ablation with irreversible electroporation (IRE). Methods We evaluated the systemic immune response in patients with hepatocellular carcinoma (HCC) after IRE treatment. Furthermore, we analyzed the tumor infiltrating T lymphocytes and the level of serum cytokines in IRE and control groups of tumor-bearing mice. Results We observed that IRE induced an increase in WBC, neutrophil and monocyte counts and a decrease in lymphocyte count 1 day post-IRE and returned to baseline values within 7 days in the patients. Meanwhile, circulating CD4+ T cell subsets, but not CD8+, decreased 1 day post-IRE. The activated T cells and natural killer (NK) cells increased, and regulatory T (Treg) cells decreased. Furthermore, a significant increase in cytotoxic CD8+ T cells infiltration was observed on ablative tumors in mice. The level of serum IFN-γ also significantly increased in the IRE group. Conclusions Our study demonstrated that IRE not only induced immediate innate immune response dominated by the increase of neutrophils, monocytes and NK cells, but also upregulated activated T cells and downregulated Treg. Meanwhile, the results from the animal model indicated that IRE could induce antitumor adaptive immunity dominated by cytotoxic CD8+ T cells.


2006 ◽  
Vol 105 (3) ◽  
pp. 430-437 ◽  
Author(s):  
Abdeljabar El Andaloussi ◽  
Yu Han ◽  
Maciej S. Lesniak

Object Regulatory CD4+CD25+ T cells have been shown to play an important role in the regulation of the immune response. Whereas the presence of these cells has been associated with immune suppression, the lack of regulatory T (Treg) cells has been shown to induce autoimmunity. The purpose of this study was to define the role of Treg cells in tumors of the central nervous system (CNS). Methods The authors implanted syngeneic GL261 tumor cells in the brains or flanks of C57BL/6 mice. The resulting tumors were later removed at specific time points, and the presence of tumor-infiltrating lymphocytes was analyzed by performing flow cytometry for the presence of Treg cells. In a separate experiment, mice with GL261 tumors were treated with injections of anti-CD25 monoclonal antibody (mAb) to determine whether depletion of Treg cells may have an impact on the length of survival in mice with brain tumors. Tumor-infiltrating lymphocytes isolated from mice with GL261 tumors were found to have a significant increase in the presence of Treg cells compared with control lymphocytes (p < 0.05). Moreover, Treg cells isolated in murine brain tumors expressed FoxP3, CTLA-4, and CD62L. Mice treated with anti-CD25 mAb lived significantly longer than tumor-bearing control animals (p < 0.05). An analysis of brains in surviving animals showed a depletion of CD4+CD25+ T cells. Conclusions The results of this study indicate that CD4+CD25+ Treg cells play an important role in suppressing the immune response to CNS tumors. These Treg cells may therefore represent a potentially novel target for immunotherapy of malignant gliomas.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1888 ◽  
Author(s):  
Jonadab E. Olguín ◽  
Itzel Medina-Andrade ◽  
Tonathiu Rodríguez ◽  
Miriam Rodríguez-Sosa ◽  
Luis I. Terrazas

In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called “phenotypic plasticity”, where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.


2017 ◽  
Vol 8 (3) ◽  
pp. 433-438 ◽  
Author(s):  
N.G. Cortes-Perez ◽  
D. Lozano-Ojalvo ◽  
M.A. Maiga ◽  
S. Hazebrouck ◽  
K. Adel-Patient

Many studies have highlighted the immunomodulatory properties of the probiotic strain Lactobacillus casei BL23. Recently, we demonstrated the ability of this strain to modulate the Th2-oriented immune response in a mouse model of cow’s milk allergy based on the induction of a Th17-biased immune response. The probiotic function of L. casei has been also linked to gut-microbiota modifications which could been potentially involved in the immune regulation; however, its precise mechanism of action remains poorly understood. In this regard, recent studies suggest that gut microbiota induces a specific subset of CD4+FoxP3+ Treg cells that also express RORγt+, the specific transcription factor of Th17 cells. This new type of regulatory T cells, called type 3 Treg, displays suppressive function during intestinal inflammation, participating in inflammation control. We thus explored the ability of L. casei BL23 to specifically induce type 3 Treg cells, both in vitro and in vivo. Our results showed that intragastric administration of L. casei BL23 to mice induces local and systemic FoxP3+ RORγt+ type 3 Treg cells that could then participate in the beneficial effects of L. casei BL23 in different intestinal-related disorders.


2011 ◽  
Vol 10 (3) ◽  
pp. 93-99
Author(s):  
O. V. Eliseyeva

In this review we discuss the mechanisms of human immune response modification by helminth in bronchial asthma. Helminth invasion causes increase of level to regulatory T-cells and to suppression of an allergic inflammation in bronchial asthma. Antihelminth therapy leads to decrease of level Treg cells. Deficiency or dysfunction of Treg cells can be a cause of allergic diseases.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3313-3313
Author(s):  
Jochen T Frueh ◽  
Bushra Rais ◽  
Daniele Yumi Sunaga-Franze ◽  
Katja Stein ◽  
Sascha Sauer ◽  
...  

Abstract Introduction: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapy for severe malignant diseases. Following allo-HSCT, donor T cells are the driving force for eradication of the remaining malignant cells known as graft-versus-tumor (GVT) effect. However, these alloreactive T cells are also responsible for induction of graft-versus-host disease (GVHD). To date, the role of the different Thelper (Th) subsets in the pathogenesis of GVHD is not completely understood. Interestingly, these subsets share expression of a transcription factor called Interferon Regulatory Factor 4 (IRF4), which is proposed as a master regulator of cell fate decision of T cells. This project aims to analyze the role of IRF4 in Th cell polarization during the development of GVHD. Methods: In mixed lymphocyte reaction (MLR), we analyzed the proliferation capacity of CFSE-labelled IRF4-deficient (IRF4-/-) T cells upon allogeneic stimulation by LPS-induced dendritic cells (DC). For analyzing the impact of IRF4 in vivo, we used previously published complete MHC-mismatched murine GVHD model (Ullrich et al., J Clin Invest, 2018). Herein, we investigated the alloreactivity of the transplanted donor T cells towards GVHD target organs with focus on colonic tissue. Additionally, RNA sequencing of re-isolated and high purity FACS-sorted donor Th cells were performed to get a deep insight into the IRF4-mediated regulation of Th cell polarization. Results: In the MLR setting, reduced CFSE dilution indicated a diminished proliferative capacity of both CD4+ and CD8+ IRF4-/- T cells compared to the corresponding WT (IRF4+/+) T cell subsets upon allogeneic stimulation (Figure 1A). Furthermore, while alloreactive WT CD4+ T cells induced severe forms of GVHD in vivo, clinical GVHD symptoms of recipients transplanted with IRF4-/- CD4+ T cells were significantly reduced and these mice showed prolonged overall survival (Figure 1B). Analyzing the mechanism, we found that the frequency of in vivo circulating donorCD4+ IRF4-/- T cells was reduced compared to transplanted WT Th cells, especially in the GVHD target organs such as the colon. However, IRF4-/- Th cells persisted in spleen, lung and colon even if they showed a reduced proliferative capacity. In line with that, colonoscopy of mice transplanted with IRF4-deficient Th cells revealed a significant reduction of GVHD associated colitis. Transcriptome analysis of re-isolated and high purity FACS-sorted donor Th cells depicted an altered gene expression profile in donor IRF4-/- Th cells compared to donor WT Th cells. Specifically, master regulators of Th cell subsets like T-bet (Th1), RORγt (Th17) and to some amount also GATA-3 (Th2) were downregulated in donor IRF4-/- Th cells whereas FoxP3, the master regulator of regulatory T cells (Treg cells), was significantly upregulated. Along the same line cytokines associated with Th1, Th2 and Th17 cell subsets such as IFN-γ, IL-21, IL-6 and IL-13 were also significantly downregulated. Besides genes that are associated with Treg cell function like Helios, FR4 (folate receptor 4) and Neuropilin 1, a transcriptional repressor, Bach2, which regulates the formation of Treg cells and suppresses Th1, Th2 and Th17 subset differentiation was highly upregulated (Tsukumo et al., Proc Natl Acad Sci U S A, 2013; Kim et al., J Immunol, 2014 ; Roychoudhuri et al., Nature, 2013 ; Vahedi et al., Nature, 2015). Along with the upregulation of Bach2 and the significant downregulation of Blimp1, another transcriptional repressor involved in T cell homeostasis and function as well as direct target of Bach2, we hypothesize that IRF4 might compete with BACH2 for the binding to BATF. These hypotheses also rely on our previous finding of BATF as critical mediator of GVHD colitis and are currently under further evaluation (Ullrich et al., J Clin Invest, 2018). Conclusion: In summary, our results indicate that IRF4 plays a key role in regulation of the Th cell polarization and therefore also in the development of GVHD. Thus, IRF4 in its interplay with BATF might be considered as a clinically relevant target for GVHD therapy. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2066-2066
Author(s):  
Benjamin Y. Lu ◽  
Richa Gupta ◽  
Tyler Stewart ◽  
Harriet M. Kluger ◽  
Lucia Jilaveanu ◽  
...  

2066 Background: Despite the biological and clinical implications, the immune composition and functional characteristics of adaptive immune cells in brain metastases (BrM) are poorly understood. Using multiplexed quantitative immunofluorescence (QIF), this study evaluates the level and functional profile of major T-cell subsets in primary lung tumors, BrM, and extracranial metastases (ECM) from lung cancers. Methods: A tissue microarray was constructed from formalin-fixed, paraffin-embedded tumor samples of 94 lung cancer patients treated at Yale Cancer Center between 2002-2013. Multiplexed QIF was used to evaluate the cases with a panel containing phenotype markers for major T-cell subsets (CD3, CD4, CD8 and FOXP3), and cell-localized activation and proliferation (granzyme-B and Ki-67). Signal for each marker was measured in marker-selected tissue compartments using the Automated Quantitative Analysis (AQUA) platform. Associations between markers and major clinicopathologic variables were studied. Results: In total, 40 primary lung tumors, 63 BrM, and 15 ECM were analyzed, including paired samples from 22 patients. Lung cancer histology included adenocarcinoma 62.5%, squamous cell carcinoma 11.5%, small cell 9.4%, and other non-small cell 16.7%. BrM had both significantly lower levels of CD3+ T-cells ( p< 0.0001) and T-cell granzyme B ( p= 0.0188) compared with primary lung tumors. No significant differences were observed in T-cell Ki-67 levels across tissues. FOXP3 measured in CD4+ T-cells were significantly lower in BrM compared with primary malignancies ( p= 0.0002) and ECM ( p= 0.0404). Among patients with BrM, higher levels of CD3+ T-cells in BrM were associated with longer overall survival. Conclusions: Lung cancer-associated BrM have lower T-cell infiltration, cytolytic function, and regulatory T-cells than primary lesions. These results indicate lower adaptive anti-tumor responses in BrM and suggest the presence of a tolerogenic microenvironment in the brain. Overcoming this could be used to design optimal treatment strategies.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Uri Galili

Anti-Gal is the most abundant antibody in humans, constituting 1% of immunoglobulins. Anti-Gal binds specificallyα-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). Immunogenicity of autologous tumor associated antigens (TAA) is greatly increased by manipulating tumor cells to expressα-gal epitopes and bind anti-Gal. Glycolipids withαgal epitopes (α-gal glycolipids) injected into tumors insert into the tumor cell membrane. Anti-Gal binding to the multiple α-gal epitopesde novopresented on the tumor cells results in targeting of these cells to APC via the interaction between the Fc portion of the bound anti-Gal and Fcγ; receptors on APC. The APC process and present immunogenic TAA peptides and thus, effectively activate tumor specific CD4+ helper T cells and CD8+ cytotoxic T cells which destroy tumor cells in micrometastases. The induced immune response is potent enough to overcome immunosuppression by Treg cells. A phase I clinical trial indicated thatα-gal glycolipid treatment has no adverse effects. In addition to achieving destruction of micrometastases in cancer patients with advance disease,α-gal glycolipid treatment may be effective as neo-adjuvant immunotherapy. Injection ofα-gal glycolipids into primary tumors few weeks prior to resection can induce a protective immune response capable of destroying micrometastases expressing autologous TAA, long after primary tumor resection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252921
Author(s):  
Virginie Doyen ◽  
Francis Corazza ◽  
Hoa Nhu Thi ◽  
Thanh Le Chi ◽  
Carine Truyens ◽  
...  

Background Like other helminths, hookworms (HW) induce a regulatory immune response able to modulate and dampen reactivity of the host to antigens. No data about the evolution of the immune response after treatment are available. We aim to phenotype the regulatory immune response during natural HW infection and its evolution after treatment. Methodology Twenty hookworm infected (HW+) and 14 non-infected subjects HW–from endemic area in the periphery of Ho Chi Minh City were included. Blood and feces samples were obtained before, 2 and 4 weeks after treatment with Albendazole 400mg. Additional samples were obtained at 3 and 12 months in the HW+ group. Hematological parameters, Treg (CD4+CD25hiFoxP3hi) and surface molecules (CD39, CD62L, ICOS, PD-1, CD45RA) were measured as well as inflammatory and lymphocytes differentiation cytokines such as IL-1β, IL-6, IFNγ, IL-4, IL-17, IL-10, IL-2 and TGFβ. Results HW+ subjects showed higher Treg, TregICOS+, Treg PD1-, TregCD62L+ and CD45RA+FoxP3lo resting Treg (rTreg). CD45RA-FoxP3lo non-suppressive Treg cells were also increased. No preferential Th1/Th2 orientation was observed, nor difference for IL-10 between two groups. After treatment, Treg, TregICOS+, TregCD62L+, Treg PD1- and rTreg decreased while IL-4 and IL-6 cytokines increased. Conclusion During HW infection, Treg are increased and characterized by a heterogeneous population: a highly suppressive as well as a non-suppressive T cells phenotype. After treatment, Treg with immune-suppressive phenotype exhibited a decrease parallel to an inflammatory Th2 response.


Sign in / Sign up

Export Citation Format

Share Document