scholarly journals Crystal Structures of Bat and Human Coronavirus ORF8 Protein Ig-Like Domain Provide Insights Into the Diversity of Immune Responses

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxue Chen ◽  
Zhechong Zhou ◽  
Chunliu Huang ◽  
Ziliang Zhou ◽  
Sisi Kang ◽  
...  

ORF8 is a viral immunoglobulin-like (Ig-like) domain protein encoded by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome. It tends to evolve rapidly and interfere with immune responses. However, the structural characteristics of various coronavirus ORF8 proteins and their subsequent effects on biological functions remain unclear. Herein, we determined the crystal structures of SARS-CoV-2 ORF8 (S84) (one of the epidemic isoforms) and the bat coronavirus RaTG13 ORF8 variant at 1.62 Å and 1.76 Å resolution, respectively. Comparison of these ORF8 proteins demonstrates that the 62-77 residues in Ig-like domain of coronavirus ORF8 adopt different conformations. Combined with mutagenesis assays, the residue Cys20 of ORF8 is responsible for forming the covalent disulfide-linked dimer in crystal packing and in vitro biochemical conditions. Furthermore, immune cell-binding assays indicate that various ORF8 (SARS-CoV-2 ORF8 (L84), ORF8 (S84), and RaTG13 ORF8) proteins have different interaction capabilities with human CD14+ monocytes in human peripheral blood. These results provide new insights into the specific characteristics of various coronavirus ORF8 and suggest that ORF8 variants may influence disease-related immune responses.

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 255
Author(s):  
Wilmer Cuervo ◽  
Lorraine M. Sordillo ◽  
Angel Abuelo

Dairy calves are unable to mount an effective immune response during their first weeks of life, which contributes to increased disease susceptibility during this period. Oxidative stress (OS) diminishes the immune cell capabilities of humans and adult cows, and dairy calves also experience OS during their first month of life. However, the impact that OS may have on neonatal calf immunity remains unexplored. Thus, we aimed to evaluate the impact of OS on newborn calf lymphocyte functions. For this, we conducted two experiments. First, we assessed the association of OS status throughout the first month of age and the circulating concentrations of the cytokines interferon-gamma (IFN-γ) and interleukin (IL) 4, as well as the expression of cytokine-encoding genes IFNG, IL2, IL4, and IL10 in peripheral mononuclear blood cells (PBMCs) of 12 calves. Subsequently, we isolated PBMCs from another 6 neonatal calves to investigate in vitro the effect of OS on immune responses in terms of activation of lymphocytes, cytokine expression, and antibody production following stimulation with phorbol 12-myristate 13-acetate or bovine herpesvirus-1. The results were compared statistically through mixed models. Calves exposed to high OS status in their first month of age showed higher concentrations of IL-4 and expression of IL4 and IL10 and lower concentrations of IFN-γ and expression of IFNG and IL2 than calves exposed to lower OS. In vitro, OS reduced lymphocyte activation, production of antibodies, and protein and gene expression of key cytokines. Collectively, our results demonstrate that OS can compromise some immune responses of newborn calves. Hence, further studies are needed to explore the mechanisms of how OS affects the different lymphocyte subsets and the potential of ameliorating OS in newborn calves as a strategy to augment the functional capacity of calf immune cells, as well as enhance calves’ resistance to infections.


2021 ◽  
Vol 9 (1) ◽  
pp. e001762
Author(s):  
Punit Upadhyaya ◽  
Johanna Lahdenranta ◽  
Kristen Hurov ◽  
Sailaja Battula ◽  
Rachel Dods ◽  
...  

BackgroundIn contrast to immune checkpoint inhibitors, the use of antibodies as agonists of immune costimulatory receptors as cancer therapeutics has largely failed. We sought to address this problem using a new class of modular synthetic drugs, termed tumor-targeted immune cell agonists (TICAs), based on constrained bicyclic peptides (Bicycles).MethodsPhage libraries displaying Bicycles were panned for binders against tumor necrosis factor (TNF) superfamily receptors CD137 and OX40, and tumor antigens EphA2, Nectin-4 and programmed death ligand 1. The CD137 and OX40 Bicycles were chemically conjugated to tumor antigen Bicycles with different linkers and stoichiometric ratios of binders to obtain a library of low molecular weight TICAs (MW <8 kDa). The TICAs were evaluated in a suite of in vitro and in vivo assays to characterize their pharmacology and mechanism of action.ResultsLinking Bicycles against costimulatory receptors (e.g., CD137) to Bicycles against tumor antigens (e.g., EphA2) created potent agonists that activated the receptors selectively in the presence of tumor cells expressing these antigens. An EphA2/CD137 TICA (BCY12491) efficiently costimulated human peripheral blood mononuclear cells in vitro in the presence of EphA2 expressing tumor cell lines as measured by the increased secretion of interferon γ and interleukin-2. Treatment of C57/Bl6 mice transgenic for the human CD137 extracellular domain (huCD137) bearing EphA2-expressing MC38 tumors with BCY12491 resulted in the infiltration of CD8+ T cells, elimination of tumors and generation of immunological memory. BCY12491 was cleared quickly from the circulation (plasma t1/2 in mice of 1–2 hr), yet intermittent dosing proved effective.ConclusionTumor target-dependent CD137 agonism using a novel chemical approach (TICAs) afforded elimination of tumors with only intermittent dosing suggesting potential for a wide therapeutic index in humans. This work unlocks a new path to effective cancer immunotherapy via agonism of TNF superfamily receptors.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shaobo Yao ◽  
Kongzhen Hu ◽  
Ganghua Tang ◽  
Siyuan Gao ◽  
Caihua Tang ◽  
...  

In this paper, a novel small-molecular apoptotic PET imaging probe,18F-ML-8 with a malonate motif structure, is presented and discussed. After study, the small tracer that belongs to a member of ApoSense family is proved to be capable of imaging merely apoptotic regions in the CTX treated tumor-bearing mice. The experimental result is further confirmed by in vitro cell binding assays and TUNEL staining assay. As a result,18F-ML-8 could be used for noninvasive visualization of apoptosis induced by antitumor chemotherapy.


1997 ◽  
Vol 53 (6) ◽  
pp. 976-983 ◽  
Author(s):  
M. L. Verdonk ◽  
J. W. Voogd ◽  
J. A. Kanters ◽  
J. Kroon ◽  
R. den Besten ◽  
...  

The structural characteristics of ortho- and meta-substituted phenylpiperazines have been investigated in order to understand their actions at the serotonin 5-HT2c receptor. The crystal structures of the 4-methylated analogues of two phenylpiperazines that are already known as 5-HT2c ligands, 1-(1-naphthyl)-4-methylpiperazine (1NMP) and 1-[(3-trifluoromethyl)phenyl]-4-methylpiperazine (TFMPMP), and those of two novel 5-HT2c ligands, 1-(2-methoxyphenyl)piperazine (oMPP) and 1-(3-methoxyphenyl)piperazine (mMPP), are determined. Molecular mechanics calculations are performed to calculate the energy profiles of six phenylpiperazines for rotation about the central phenyl–nitrogen bond. The activities of several phenylpiperazines, in combination with their crystal structures and conformational characteristics, lead to the hypothesis that the conformation for which the piperazine ring and the phenyl ring are approximately co-planar should be the 5-HT2c receptor `activating' conformation. This hypothesis is then used to predict the activities of the two novel 5-HT2c ligands oMPP and mMPP. oMPP is predicted to be an antagonist at this receptor, whereas mMPP is predicted to be an agonist. As this prediction was confirmed by in vitro and in vivo tests, the proposed conformation is very likely to be responsible for the activation of the 5-HT2c receptor.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 894-894
Author(s):  
Veronika Ecker ◽  
Martina Braun ◽  
Tanja Neumayer ◽  
Markus Muschen ◽  
Jürgen Ruland ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is one of the most common B cell malignancies in the Western world. Malignant B cells are blocked from differentiating into immunoglobulin producing-plasma cells and clonally accumulate in the spleen, lymph nodes, bone marrow and peripheral blood. CLL is characterized by immunosuppression throughout all disease stages, which is mediated by increased numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Jitschin and Braun et al., Blood 2014) and direct inhibitory effects of the malignant CLL cells on T cells (Christopoulos etal., Blood 2011). Over the past decade, significant improvement in understanding the pathogenesis of CLL has highlighted the importance of active B cell receptor (BCR) signaling. This has revealed promising targeted treatment options, including the small molecule inhibitors targeting the phosphatidylinositol-3-kinase (PI3K) signaling pathway. Idelalisib and Duvelisib are under clinical investigation for CLL treatment, however, treatment-related toxicities are limiting their application and none of these approaches are curative, highlighting the importance of functional anti-tumor immune responses in CLL for prolonged treatment efficacy. Here, we are testing a novel approach that aims to selectively target CLL B cells and simultaneously restore an appropriate immune cell function. The phosphatase SH2-domain-containing inositol 5ʹ-phosphatase 1 (SHIP1) serves as negative feedback molecule and downregulates PI3K signaling in B cells by dephosphorylating the 5`phosphate of Phosphatidylinositol (3,4,5)-trisphosphate. We hypothesize that CLL cells rely on such negative regulators for optimal survival and can only tolerate a maximum signaling level. We are therefore testing whether SHIP1 inhibition induces hypersignaling and thereby CLL cell death. Furthermore, we are investigating whether SHIP1 inhibition simultanously stimulates immune responses, as it has been shown to induce expansion of murine hematopoietic and mesenchymal stem cell compartments (Brooks et al., Stem cells 2014). 3α-Aminocholestane (3AC) is a small molecule inhibitor of SHIP1 and can be used for pharmacological inhibition. First, we investigated the expression and phosphorylation levels of SHIP1 in CLL. We found SHIP1 to be expressed at various levels in CLL peripheral blood and strongly phosphorylated compared to age-matched healthy donors. Besides, SHIP1 transcription is upregulated in lymph nodes as compared to peripheral blood, which is in line with the assumption of increased BCR signaling in secondary lymphoid organs. We then set out to investigate the consequences of SHIP1 phosphatase inhibition. Similarly, to recent findings in acute lymphoblastic leukemia (Chen et al., Nature 2015), pharmacological inhibition of SHIP1 lead to rapid cell death of CLL cells. We further investigated the mode of cell death and observed specific features of apoptosis, namely caspase 3/7 activation and phosphatidylserine exposure on the outer cell membrane. This has been tested on primary CLL patient samples and T cell leukemia/lymphoma 1 (TCL1)-driven murine CLL cells and was not observed or significantly less pronounced in other lymphoma cell lines or healthy primary B cells. To confirm the specificity of the observed effects, we genetically activated AKT with a GFP reporter in the TCL1-driven mouse model in vivo and in vitro. By tracking GFP-expressing CLL cells, we observed an initial expansion followed by rapid cell death in vitro. When we induced AKT activation in vivo, GFP+ CLL cells were not detectable in the peripheral blood, total CLL count declined upon induction and we found decreased tumor burden in the secondary lymphoid organs, particularly in the lymph nodes. In addition to the direct effects on CLL cells, we sought to investigate the impact of SHIP1 inhibition on other immune cell functions. We observed that SHIP1 inhibition lowers the activity threshold of T cells: When we stimulated a reporter cell line with suboptimal doses of anti-CD3, 3AC treatment significantly enhanced the response rate. Therefore, we propose SHIP1 as a novel interesting target in CLL. In contrast to kinase inhibition and downregulation of the BCR signaling strength, phosphatase inhibition and BCR signaling overaction provides an attractive new treatment strategy for elimination of malignant CLL cells and stimulation of immune responses. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Valerine C. Chunda ◽  
Manuel Ritter ◽  
Ayukenchengamba Bate ◽  
Narcisse V. T. Gandjui ◽  
Mathias E. Esum ◽  
...  

Abstract Background Different immune mechanisms are capable of killing developmental stages of filarial nematodes and these mechanisms are also likely to vary between the primary and a challenge infection. However, the lack of a detailed analysis of cytokine, chemokine and immunoglobulin levels in human loiasis is still evident. Therefore, detailed analysis of immune responses induced by the different developmental stages of Loa loa in immune-competent BALB/c mice will aid in the characterization of distinct immune responses that are important for the immunity against loiasis. Methods Different developmental stages of L. loa were obtained from human peripheral blood (microfilariae, MF), the transmitting vector, Chrysops (larval stage 3, L3) and infected immune-deficient BALB/cRAG2γc−/− mice (L4, L5, adult worms). Groups of wildtype BALB/c mice were then injected with the isolated stages and after 42 days post-infection (pi), systemic cytokine, chemokine and immunoglobulin levels were determined. These were then compared to L. loa-specific responses from in vitro re-stimulated splenocytes from individual mice. All parameters were determined using Luminex technology. Results In a pilot study, BALB/c mice cleared the different life stages of L. loa within 42 days pi and systemic cytokine, chemokine and immunoglobulin levels were equal between infected and naive mice. Nevertheless, L. loa-specific re-stimulation of splenocytes from mice infected with L5, MF or adult worms led to induction of Th2, Th17 and chemokine secretion patterns. Conclusions This study shows that although host immunity remains comparable to naive mice, clearance of L. loa life-cycle development stages can induce immune cell memory leading to cytokine, chemokine and immunoglobulins secretion patterns which might contribute to immunity and protection against reinfection.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (6) ◽  
pp. 1481-1487 ◽  
Author(s):  
N. Gopalakrishnan ◽  
R. Hannam ◽  
G. P. Casoni ◽  
D. Barriet ◽  
J. M. Ribe ◽  
...  

Immunity on a chip: modeling and designing immune reactionsin vitroto study immune responses on a chip as well as unraveling physiological processes under a microscope.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1232
Author(s):  
Natalia Teresa Jarzebska ◽  
Julia Frei ◽  
Severin Lauchli ◽  
Lars E. French ◽  
Emmanuella Guenova ◽  
...  

The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Jody Hazlett ◽  
Virginia Niemi ◽  
Aziz Aiderus ◽  
Katelyn Powell ◽  
Lyn Wise ◽  
...  

Abstract Background Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model. Methods RT-qPCR and a bead-based Bioplex system were used to investigate the expression of chemokines in MCF-7 breast cancer cells deprived of oestrogen. A migration assay and flow cytometry were used to measure the migration of human peripheral blood mononuclear cells (PBMCs) to MCF-7 cells grown without the main biologically active oestrogen, oestradiol. Using flow cytometry and immunohistochemistry, we examined the immune cell infiltrate into tumours created by injecting SSM3 ER+ breast cancer cells into wild-type, immunocompetent 129/SvEv mice. Results This study demonstrates that oestrogen deprivation increases breast cancer secretion of TNF, CCL5, IL-6, IL-8, and CCL22 and alters total human peripheral blood mononuclear cell migration in an in vitro assay. Oestrogen deprivation of breast cancer cells increases migration of CD4+ T cells and decreases migration of CD11c+ and CD14+ PBMC towards cancer cells. PBMC migration towards breast cancer cells can be reduced by treatment with the non-steroidal anti-inflammatory drugs, aspirin and celecoxib. Treatment with endocrine therapy using the aromatase inhibitor letrozole increases CD4+ T cell infiltration into ER+ breast cancer tumours in immune competent mice. Conclusions These results suggest that anti-oestrogen treatment of ER+ breast cancer cells can alter cytokine production and immune cells in the area surrounding the cancer cells. These findings may have implications for the combination and timing of anti-oestrogen therapies with other therapies.


Sign in / Sign up

Export Citation Format

Share Document