scholarly journals Analysis of Elastic Normal Contact of Surfaces With Regular Microgeometry Based on the Localization Principle

2020 ◽  
Vol 6 ◽  
Author(s):  
Irina G. Goryacheva ◽  
Ivan Y. Tsukanov
2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


1992 ◽  
Vol 20 (1) ◽  
pp. 33-56 ◽  
Author(s):  
L. O. Faria ◽  
J. T. Oden ◽  
B. Yavari ◽  
W. W. Tworzydlo ◽  
J. M. Bass ◽  
...  

Abstract Recent advances in the development of a general three-dimensional finite element methodology for modeling large deformation steady state behavior of tire structures is presented. The new developments outlined here include the extension of the material modeling capabilities to include viscoelastic materials and a generalization of the formulation of the rolling contact problem to include special nonlinear constraints. These constraints include normal contact load, applied torque, and constant pressure-volume. Several new test problems and examples of tire analysis are presented.


2021 ◽  
Vol 11 (9) ◽  
pp. 4039
Author(s):  
Yiran Niu ◽  
Lin Li ◽  
Yanwei Zhang ◽  
Shicai Yu ◽  
Jian Zhou

Contact breakage of particles makes a large difference in the strength of coarse-grained soils, and exploring the characteristics within the process of the breakage is of great significance. Ignoring the influence of particle shape, the micromechanism of two spherical particles breaking under normal–tangential contact conditions was investigated theoretically and experimentally. Through theoretical analysis, the breakage form, the shape and size of the conical core, and the relationship between the normal and tangential forces at crushing were predicted. Particle contact tests of two gypsum spheres were carried out, in which the breakage forms, features of the conical cores and the normal and tangential forces at crushing were recorded for comparison with the predicted values. The test results and the theoretical predictions showed good agreement. Both the analysis and test demonstrate that the presence of tangential forces causes the conical core to assume the shape of an oblique cone, and the breakage form to change. Moreover, with increasing normal contact force, the tangential force needed for crushing increases gradually first and then decreases suddenly.


Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten ◽  
Brian Marquis ◽  
Erik Curtis ◽  
Magdy El-Sibaie ◽  
...  

Accurate prediction of railroad vehicle performance requires detailed formulations of wheel-rail contact models. In the past, most dynamic simulation tools used an offline wheel-rail contact element based on look-up tables that are used by the main simulation solver. Nowadays, the use of an online nonlinear three-dimensional wheel-rail contact element is necessary in order to accurately predict the dynamic performance of high speed trains. Recently, the Federal Railroad Administration, Office of Research and Development has sponsored a project to develop a general multibody simulation code that uses an online nonlinear three-dimensional wheel-rail contact element to predict the contact forces between wheel and rail. In this paper, several nonlinear wheel-rail contact formulations are presented, each using the online three-dimensional approach. The methods presented are divided into two contact approaches. In the first Constraint Approach, the wheel is assumed to remain in contact with the rail. In this approach, the normal contact forces are determined by using the technique of Lagrange multipliers. In the second Elastic Approach, wheel/rail separation and penetration are allowed, and the normal contact forces are determined by using Hertz’s Theory. The advantages and disadvantages of each method are presented in this paper. In addition, this paper discusses future developments and improvements for the multibody system code. Some of these improvements are currently being implemented by the University of Illinois at Chicago (UIC). In the accompanying “Part 2” and “Part 3” to this paper, numerical examples are presented in order to demonstrate the results obtained from this research.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
R. Fargère ◽  
P. Velex

A global model of mechanical transmissions is introduced which deals with most of the possible interactions between gears, shafts, and hydrodynamic journal bearings. A specific element for wide-faced gears with nonlinear time-varying mesh stiffness and tooth shape deviations is combined with shaft finite elements, whereas the bearing contributions are introduced based on the direct solution of Reynolds' equation. Because of the large bearing clearances, particular attention has been paid to the definition of the degrees-of-freedom and their datum. Solutions are derived by combining a time step integration scheme, a Newton–Raphson method, and a normal contact algorithm in such a way that the contact conditions in the bearings and on the gear teeth are simultaneously dealt with. A series of comparisons with the experimental results obtained on a test rig are given which prove that the proposed model is sound. Finally, a number of results are presented which show that parameters often discarded in global models such as the location of the oil inlet area, the oil temperature in the bearings, the clearance/elastic couplings interactions, etc. can be influential on static and dynamic tooth loading.


2007 ◽  
Vol 561-565 ◽  
pp. 1699-1701
Author(s):  
Nobuyuki Takahira ◽  
Takeshi Yoshikawa ◽  
Toshihiro Tanaka

Unusual wetting behavior of liquid Cu was found on a surface-oxidized iron substrate in reducing atmosphere. Liquid Cu wetted and spread very widely on the iron substrate when a droplet was attached with the substrate in Ar-10%H2 after the surface oxidation of the substrate. The oxidationreduction process fabricates a porous layer at the surface of the iron substrate. The pores in the porous iron layer are 3-dimensionally interconnected. Thus, liquid metals, which are contacted with the reduced iron samples, penetrate into these pores by capillary force to cause the unusual wetting behavior. It has been already confirmed that liquid Ag, Sn, In and Bi show this phenomenon onto surface-porous iron samples as well as liquid Cu. This unusual wetting behavior of a liquid metal has been correlated to the normal contact angle of the liquid metal on a flat iron substrate.


Sign in / Sign up

Export Citation Format

Share Document