scholarly journals Characterization and Functional Test of Canine Probiotics

2021 ◽  
Vol 12 ◽  
Author(s):  
Hyun-Jun Jang ◽  
Seungwoo Son ◽  
Jung-Ae Kim ◽  
Min Young Jung ◽  
Yeon-jae Choi ◽  
...  

Probiotics can modulate the composition of gut microbiota and benefit the host animal health in multiple ways. Lactic acid bacteria (LAB), mainly Lactobacillus and Bifidobacterium species, are well-known microbes with probiotic potential. In the present study, 88 microbial strains were isolated from canine feces and annotated. Among these, the four strains CACC517, 537, 558, and 566 were tested for probiotic characteristics, and their beneficial effects on hosts were evaluated both in vitro and in vivo; these strains exhibited antibiosis, antibiotic activity, acid and bile tolerance, and relative cell adhesion to the HT-29 monolayer cell line. Byproducts of these strains increased the viability and decreased oxidative stress in mouse and dog cell lines (RAW264.7 and DH82, respectively). Subsequently, when the probiotics were applied to the clinical trial, changes in microbial composition and relative abundance of bacterial strains were clearly observed in the experimental animals. Experimental groups before and after the application were obviously separated from PCA analysis of clinical results. Conclusively, these results could provide comprehensive understanding of the effects of probiotic strains (CACC517, 537, 558, and 566) and their industrial applications.

2020 ◽  
Vol 142 (8) ◽  
Author(s):  
Renata T. Silva ◽  
Aloysio A. S. Campos ◽  
Edson J. Soares ◽  
Leonardo dos Santos ◽  
Renato N. Siqueira

Abstract Drag reduction (DR) by polymers has several industrial applications, and it has also shown to produce beneficial effects on blood circulation and may represent a way to treat cardiovascular disorders. Concerning medical applications, there are basically two types of studies using drag reducing polymers (DRP), i.e., in vitro and in vivo. Although blood may be used in the in vitro studies, there are several limitations, such as incompatibility of Rh and possibility of denaturing blood proteins. Thus, biomedical researchers commonly use an artificial plasma-like saline nutrient solution (SNS), which contains ions, nutrients, a buffer to maintain pH levels and a supply of oxygen to the tissue. The behavior of the DRP in water is well reported in the literature, but the SNS components can interact with the polymers, changing their capacity to reduce drag. This study investigates the behavior of three different polymers, i.e., polyacrylamide (PAM), polyethylene oxide (PEO), and xanthan gum (XG), when applied as DRP to a commonly used SNS. For the conditions evaluated, the SNS composition does not change significantly PAM and PEO behavior, showing that they can be satisfactorily diluted in this solvent without loss of efficiency as drag reducers. However, it modifies XG conformation, drastically reducing its efficiency. The experiments with tail arterial beds suggest that PAM is efficient to reduce the perfusion pressure, but PEO and XG do not seem to be good reducers under the experimental conditions that have been analyzed, possibly due to the interaction of the drag reducers with the flow, with the solvent components and with the tissues that were kept alive during the experiments. Although PEO did not present a good performance as DRP for the conditions evaluated in the perfusion tests, its performance can be improved in other organs where the turbulence levels, or instabilities, are higher, as suggested by the rheometer tests.


2020 ◽  
Vol 21 (15) ◽  
pp. 5423
Author(s):  
Jana Al Azzaz ◽  
Alissar Al Tarraf ◽  
Arnaud Heumann ◽  
David Da Silva Barreira ◽  
Julie Laurent ◽  
...  

Bacterial strains of the Lactobacillaceae family are widely used as probiotics for their multifaceted potential beneficial properties. However, no official recommendations for their clinical use exist since, in many cases, oral administrations of these bacteria displayed limited beneficial effects in human. Additional research is thus needed to improve the efficiency of existing strains with strong potential. In this context, we assess in vitro the effects of nine polyphenols to stimulate biofilm formation by lactobacilli, a feature enhancing their functionalities. Among these polyphenols, we identify trans-Resveratrol (referred to hereafter as Resveratrol) as a potent inducer of biofilm formation by Lacticaseibacillus paracasei (formerly designated as Lactobacillus paracasei) ATCC334 strain. This effect is strain-dependent and relies on the enhancement of L. paracasei adhesion to abiotic and biotic surfaces, including intestinal epithelial cells. Mechanistically, Resveratrol modify physico-chemical properties of the bacterial surface and thereby enhances L. paracasei aggregation, subsequently facilitating adhesion and biofilm development. Together, our in vitro data demonstrate that Resveratrol might be used to modulate the behavior of Lactobacilli with probiotic properties. Combination of probiotics and polyphenols could be considered to enhance the probiotic functionalities in further in vivo studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shivangi Goyal ◽  
Nidhi Gupta ◽  
Sreemoyee Chatterjee

Current lifestyle, stress, and pollution have dramatically enhanced the progression of several diseases in human. Globally, scientists are looking for therapeutic agents that can either cure or delay the onset of diseases. Medicinal plants from time immemorial have been used frequently in therapeutics. Of many such plants, fenugreek is one of the oldest herbs which have been identified as an important medicinal plant by the researchers around the world. It is potentially beneficial in a number of diseases such as diabetes, hypercholesterolemia, and inflammation and probably in several kinds of cancers. It has industrial applications such as synthesis of steroidal hormones. Its medicinal properties and their role in clinical domain can be attributed to its chemical constituents. The 3 major chemical constituents which have been identified as responsible for principle health effects are galactomannan, 4-OH isoleucine, and steroidal saponin. Numerous experiments have been carried outin vivoandin vitrofor beneficial effects of both the crude chemical and of its active constituent. Due to its role in health care, the functional food industry has referred to it as a potential nutraceutical. This paper is about various medicinal benefits of fenugreek and its potential application as therapeutic agent against several diseases.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 454 ◽  
Author(s):  
Marko Dachev ◽  
Jana Bryndová ◽  
Milan Jakubek ◽  
Zdeněk Moučka ◽  
Marian Urban

Conjugated linoleic acids (CLA) are distinctive polyunsaturated fatty acids. They are present in food produced by ruminant animals and they are accumulated in seeds of certain plants. These naturally occurring substances have demonstrated to have anti-carcinogenic activity. Their potential effect to inhibit cancer has been shown in vivo and in vitro studies. In this review, we present the multiple effects of CLA isomers on cancer development such as anti-tumor efficiency, anti-mutagenic and anti-oxidant activity. Although the majority of the studies in vivo and in vitro summarized in this review have demonstrated beneficial effects of CLA on the proliferation and apoptosis of tumor cells, further experimental work is needed to estimate the true value of CLA as a real anti-cancer agent.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Callizot ◽  
C. Estrella ◽  
S. Burlet ◽  
A. Henriques ◽  
C. Brantis ◽  
...  

AbstractProgranulin (PGRN) is a protein with multiple functions including the regulation of neuroinflammation, neuronal survival, neurite and synapsis growth. Although the mechanisms of action of PGRN are currently unknown, its potential therapeutic application in treating neurodegenerative diseases is huge. Thus, strategies to increase PGRN levels in patients could provide an effective treatment. In the present study, we investigated the effects of AZP2006, a lysotropic molecule now in phase 2a clinical trial in Progressive Supranuclear Palsy patients, for its ability to increase PGRN level and promote neuroprotection. We showed for the first time the in vitro and in vivo neuroprotective effects of AZP2006 in neurons injured with Aβ1–42 and in two different pathological animal models of Alzheimer’s disease (AD) and aging. Thus, the chronic treatment with AZP2006 was shown to reduce the loss of central synapses and neurons but also to dramatically decrease the massive neuroinflammation associated with the animal pathology. A deeper investigation showed that the beneficial effects of AZP2006 were associated with PGRN production. Also, AZP2006 binds to PSAP (the cofactor of PGRN) and inhibits TLR9 receptors normally responsible for proinflammation when activated. Altogether, these results showed the high potential of AZP2006 as a new putative treatment for AD and related diseases.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document