scholarly journals We Are One: Multispecies Metabolism of a Biofilm Consortium and Their Treatment Strategies

2021 ◽  
Vol 12 ◽  
Author(s):  
Ruchika Vinod Joshi ◽  
Cindy Gunawan ◽  
Riti Mann

The ecological and medical significance of bacterial biofilms have been well recognized. Biofilms are harder to control than their planktonic free-living counterparts and quite recently, the focus of the study has shifted to the multispecies consortia, which represent the vast majority of real-case infection scenarios. Studies have begun to explore the complex interspecies interactions within these biofilms. However, only little attention is currently given to the role of cellular metabolites in the cell-to-cell communication. The concentration gradients of metabolic substrates and products affect the spatial growth of bacteria in multispecies biofilm. This, if looked into more deeply, can lead to identification of potential therapies targeting the specific metabolites and hence the coordinated protection in the bacterial community. Herein, we review the interspecies communications, including their metabolic cross-talking, in multispecies biofilm, to signify the importance of such interactions on the initial formation and subsequent growth of these biofilms. Multispecies biofilms with their species heterogeneity are more resilient to antimicrobial agents than their single species biofilm counterparts and this characteristic is of particular interest when dealing with pathogenic bacteria. In this Review, we also discuss the treatment options available, to include current and emerging avenues to combat pathogenic multispecies biofilms in the clinical, environmental, as well as industrial settings.

2011 ◽  
Vol 36 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Y Ramakrishna ◽  
H Goda ◽  
MS Baliga ◽  
AK Munshi

The association between the oral microbiota and oral diseases is well established. Various antimicrobial agents including antibiotics are commercially available against oral pathogenic bacteria. For the reasons of antibiotic resistance, their adverse effects and financial considerations in the developing countries, there is a need for alternate preventive and curative treatment options that are also safe, effective and economical. Traditional medicines have been used since ancient times for the treatment of oral diseases including dental caries, periodontal diseases that affect the majority of the population and can affect a person's overall health. Natural phytochemicals are certain organic components isolated from plants and some of these extracts are considered to be beneficial to health. They serve as antioxidants, enhance immune response,provide protection against oral cancer and other diseases and also repair DNA damage caused by smoking and other toxic exposure, and detoxify carcinogens. The natural products derived from medicinal plants have proven to be an abundant source of biologically active compounds, many of which have been the basis for the development of new lead chemicals for pharmaceuticals.They are considered to be good alternatives to synthetic chemicals. This article presents a review of natural alternatives derived from plants and plant products that can serve as a prevention and treatment option against cariogenic bacteria.


2020 ◽  
Author(s):  
Cristina Amador ◽  
Henriette L. Røder ◽  
Ute Kuhlicke ◽  
Thomas Neu ◽  
Mette Burmølle

<p>The biofilm matrix contributes to the establishment of microbial cells on very diverse surfaces, stabilizing biofilms and providing cells with protection against multiple hostile conditions. Moreover, the biofilm matrix can also retain nutrients, enzymes or quorum sensing molecules, favoring the establishment of social interactions among biofilm cells. Functional bacterial amyloids are part of the biofilm structural components of various species, and they were previously proven to bind QS molecules and strengthen the matrix. Multiple studies have been conducted to characterize matrix determinants and their regulation in single species biofilms, while these remain scarcely understood in multispecies biofilms. We have previously isolated and characterized a soil-derived consortium composed of Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus showing enhanced biofilm biomass and differential gene/protein expression specific of the four-species biofilm.</p> <p>This study aimed at exploring the effect of interspecies interactions on biofilm matrix production in the four-species biofilm. We hypothesize that interspecies interactions may result in differential expression of matrix-encoding genes responsible for biofilm emergent properties.</p> <p>We searched for matrix determinant homologues in X.retroflexus and combined different techniques for characterizing the matrix identity and expression in mono-, dual- and multispecies biofilms.</p> <p>The fap amyloid operon, described in Pseudomonas as a biofilm-scaffold contributing element, was deleted in X. retroflexus, replaced in the four-species model and compared to the parental community for biofilm structure and adhesion capability. The fap mutant displayed poor substrate colonization in flow cells in both mono- and multispecies biofilms with relative filamentous structure compared to the parental strain/ consortium. However, adhesion did not significantly change under static conditions. To characterize matrix composition, we tested 78 different lectins in multispecies biofilms and identified five that bound to our samples. Interestingly, some matrix glycoconjugates were only produced in the consortium.</p> <p>Our data suggest that loss of matrix components, such as the Fap amyloid, and the presence of other species, influences synergistic biofilm properties in the four-species consortium. Ongoing approaches involving localized expression of matrix-encoding genes and matrix proteomes will aid in identifying the mechanisms underlying emergent properties in the four-species biofilm.</p> <p> </p>


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 279 ◽  
Author(s):  
Virginie Lemoine ◽  
Clément Bernard ◽  
Charlotte Leman-Loubière ◽  
Barbara Clément-Larosière ◽  
Marion Girardot ◽  
...  

Biofilm-related infections are a matter of concern especially because of the poor susceptibility of microorganisms to conventional antimicrobial agents. Innovative approaches are needed. The antibiofilm activity of extracts of cyanobacteria Arthrospira platensis, rich in free fatty acids, as well as of extract-loaded copper alginate-based nanocarriers, were studied on single- and dual-species biofilms of Candida albicans and Cutibacterium acnes. Their ability to inhibit the biofilm formation and to eradicate 24 h old biofilms was investigated. Concentrations of each species were evaluated using flow cytometry. Extracts prevented the growth of C. acnes single-species biofilms (inhibition > 75% at 0.2 mg/mL) but failed to inhibit preformed biofilms. Nanovectorised extracts reduced the growth of single-species C. albicans biofilms (inhibition > 43% at 0.2 mg/mL) while free extracts were weakly or not active. Nanovectorised extracts also inhibited preformed C. albicans biofilms by 55% to 77%, whereas the corresponding free extracts were not active. In conclusion, even if the studied nanocarrier systems displayed promising activity, especially against C. albicans, their efficacy against dual-species biofilms was limited. This study highlighted that working in such polymicrobial conditions can give a more objective view of the relevance of antibiofilm strategies by taking into account interspecies interactions that can offer additional protection to microbes.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 830
Author(s):  
Christian Emmanuel Mahavy ◽  
Pierre Duez ◽  
Mondher ElJaziri ◽  
Tsiry Rasamiravaka

The worldwide emergence of antibiotic-resistant bacteria and the thread of widespread superbug infections have led researchers to constantly look for novel effective antimicrobial agents. Within the past two decades, there has been an increase in studies attempting to discover molecules with innovative properties against pathogenic bacteria, notably by disrupting mechanisms of bacterial virulence and/or biofilm formation which are both regulated by the cell-to-cell communication mechanism called ‘quorum sensing’ (QS). Certainly, targeting the virulence of bacteria and their capacity to form biofilms, without affecting their viability, may contribute to reduce their pathogenicity, allowing sufficient time for an immune response to infection and a reduction in the use of antibiotics. African plants, through their huge biodiversity, present a considerable reservoir of secondary metabolites with a very broad spectrum of biological activities, a potential source of natural products targeting such non-microbicidal mechanisms. The present paper aims to provide an overview on two main aspects: (i) succinct presentation of bacterial virulence and biofilm formation as well as their entanglement through QS mechanisms and (ii) detailed reports on African plant extracts and isolated compounds with antivirulence properties against particular pathogenic bacteria.


2006 ◽  
Vol 72 (6) ◽  
pp. 3916-3923 ◽  
Author(s):  
Mette Burm�lle ◽  
Jeremy S. Webb ◽  
Dhana Rao ◽  
Lars H. Hansen ◽  
S�ren J. S�rensen ◽  
...  

ABSTRACT Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


2019 ◽  
Vol 21 (10) ◽  
pp. 734-748 ◽  
Author(s):  
Baoling Guo ◽  
Qiuxiang Zheng

Aim and Objective: Lung cancer is a highly heterogeneous cancer, due to the significant differences in molecular levels, resulting in different clinical manifestations of lung cancer patients there is a big difference. Including disease characterization, drug response, the risk of recurrence, survival, etc. Method: Clinical patients with lung cancer do not have yet particularly effective treatment options, while patients with lung cancer resistance not only delayed the treatment cycle but also caused strong side effects. Therefore, if we can sum up the abnormalities of functional level from the molecular level, we can scientifically and effectively evaluate the patients' sensitivity to treatment and make the personalized treatment strategies to avoid the side effects caused by over-treatment and improve the prognosis. Result & Conclusion: According to the different sensitivities of lung cancer patients to drug response, this study screened out genes that were significantly associated with drug resistance. The bayes model was used to assess patient resistance.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


2020 ◽  
Vol 21 (10) ◽  
pp. 1011-1026
Author(s):  
Bruna O. Costa ◽  
Marlon H. Cardoso ◽  
Octávio L. Franco

: Aminoglycosides and β-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and β-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas β-lactamases hydrolyze the β-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and β-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and β-lactamases, and how these molecules could be used for future treatment strategies.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Giulia Orazi ◽  
Fabrice Jean-Pierre ◽  
George A. O’Toole

ABSTRACT The thick mucus within the airways of individuals with cystic fibrosis (CF) promotes frequent respiratory infections that are often polymicrobial. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent pathogens that cause CF pulmonary infections, and both are among the most common etiologic agents of chronic wound infections. Furthermore, the ability of P. aeruginosa and S. aureus to form biofilms promotes the establishment of chronic infections that are often difficult to eradicate using antimicrobial agents. In this study, we found that multiple LasR-regulated exoproducts of P. aeruginosa, including 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), siderophores, phenazines, and rhamnolipids, likely contribute to the ability of P. aeruginosa PA14 to shift S. aureus Newman norfloxacin susceptibility profiles. Here, we observe that exposure to P. aeruginosa exoproducts leads to an increase in intracellular norfloxacin accumulation by S. aureus. We previously showed that P. aeruginosa supernatant dissipates the S. aureus membrane potential, and furthermore, depletion of the S. aureus proton motive force recapitulates the effect of the P. aeruginosa PA14 supernatant on shifting norfloxacin sensitivity profiles of biofilm-grown S. aureus Newman. From these results, we hypothesize that exposure to P. aeruginosa PA14 exoproducts leads to increased uptake of the drug and/or an impaired ability of S. aureus Newman to efflux norfloxacin. Surprisingly, the effect observed here of P. aeruginosa PA14 exoproducts on S. aureus Newman susceptibility to norfloxacin seemed to be specific to these strains and this antibiotic. Our results illustrate that microbially derived products can alter the ability of antimicrobial agents to kill bacterial biofilms. IMPORTANCE Pseudomonas aeruginosa and Staphylococcus aureus are frequently coisolated from multiple infection sites, including the lungs of individuals with cystic fibrosis (CF) and nonhealing diabetic foot ulcers. Coinfection with P. aeruginosa and S. aureus has been shown to produce worse outcomes compared to infection with either organism alone. Furthermore, the ability of these pathogens to form biofilms enables them to cause persistent infection and withstand antimicrobial therapy. In this study, we found that P. aeruginosa-secreted products dramatically increase the ability of the antibiotic norfloxacin to kill S. aureus biofilms. Understanding how interspecies interactions alter the antibiotic susceptibility of bacterial biofilms may inform treatment decisions and inspire the development of new therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document