scholarly journals Pectin Induced Colony Expansion of Soil-Derived Flavobacterium Strains

2021 ◽  
Vol 12 ◽  
Author(s):  
Judith Kraut-Cohen ◽  
Orr H. Shapiro ◽  
Barak Dror ◽  
Eddie Cytryn

The genus Flavobacterium is characterized by the capacity to metabolize complex organic compounds and a unique gliding motility mechanism. Flavobacteria are often abundant in root microbiomes of various plants, but the factors contributing to this high abundance are currently unknown. In this study, we evaluated the effect of various plant-associated poly- and mono-saccharides on colony expansion of two Flavobacterium strains. Both strains were able to spread on pectin and other polysaccharides such as microcrystalline cellulose. However, only pectin (but not pectin monomers), a component of plant cell walls, enhanced colony expansion on solid surfaces in a dose- and substrate-dependent manner. On pectin, flavobacteria exhibited bi-phasic motility, with an initial phase of rapid expansion, followed by growth within the colonized area. Proteomic and gene expression analyses revealed significant induction of carbohydrate metabolism related proteins when flavobacteria were grown on pectin, including selected SusC/D, TonB-dependent glycan transport operons. Our results show a positive correlation between colony expansion and the upregulation of proteins involved in sugar uptake, suggesting an unknown linkage between specific operons encoding for glycan uptake and metabolism and flavobacterial expansion. Furthermore, within the context of flavobacterial-plant interactions, they suggest that pectin may facilitate flavobacterial expansion on plant surfaces in addition to serving as an essential carbon source.

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Sheng Min Shih ◽  
Benjamin D Engel ◽  
Fatih Kocabas ◽  
Thomas Bilyard ◽  
Arne Gennerich ◽  
...  

The assembly and maintenance of all cilia and flagella require intraflagellar transport (IFT) along the axoneme. IFT has been implicated in sensory and motile ciliary functions, but the mechanisms of this relationship remain unclear. Here, we used Chlamydomonas flagellar surface motility (FSM) as a model to test whether IFT provides force for gliding of cells across solid surfaces. We show that IFT trains are coupled to flagellar membrane glycoproteins (FMGs) in a Ca2+-dependent manner. IFT trains transiently pause through surface adhesion of their FMG cargos, and dynein-1b motors pull the cell towards the distal tip of the axoneme. Each train is transported by at least four motors, with only one type of motor active at a time. Our results demonstrate the mechanism of Chlamydomonas gliding motility and suggest that IFT plays a major role in adhesion-induced ciliary signaling pathways.


2020 ◽  
Author(s):  
Judith Kraut-Cohen ◽  
Orr H. Shapiro ◽  
Barak Dror ◽  
Eddie Cytryn

SummaryFlavobacterium is a genus, belonging to the Bacteriodetes phylum, characterized by a unique gliding motility. They are often abundant in root microbiomes of various plants, but the factors contributing to this high abundance are currently unknown. In this study, we evaluated the effect of various plant-associated poly- and mono-saccharides on colony expansion of two Flavobacterium strains. Both strains were able to grow on pectin and other polysaccharides such as microcrystalline cellulose. However, only pectin, a major component of plant cell walls, substantially enhanced colony expansion on solid surfaces in a dose- and substrate-dependent manner (but did not occur on pectin monomers). On pectin, flavobacteria exhibited a bi-phasic behavior, with an initial phase of rapid expansion, followed by growth within the colonized area. Proteomic and gene expression analyses revealed significant induction of carbohydrate metabolism related proteins when flavobacteria were grown on pectin, including selected SusC/D, TonB-dependent glycan transport operons. Our results suggest an unknown linkage between specific glycan associated operons and flavobacterial colony expansion. This may be associated with their capacity to rapidly glide along the root and metabolize plant cell wall carbohydrates, characteristics that are crucial to rhizosphere competence.Originality-Significance StatementThis study reveals unique data linking plant glycan metabolism and bacterial motility, providing insight into bacterial-root associations and rhizosphere competence. Specifically, it explores mechanisms associated with pectin-stimulated colony expansion in root-associated Flavobacterium strains. We determined that expansion of colonies on pectin was biphasic in nature, characterized by rapid proliferation followed by biomass accumulation. We demonstrate by proteomic and gene expression analyses that expansion of Flavobacterium on pectin strongly induces TonB related transporters, which seemingly play a role in motility in addition to the uptake and metabolism of plant-associated glycans.


2006 ◽  
Vol 188 (18) ◽  
pp. 6469-6475 ◽  
Author(s):  
Ryoichiro Nagai ◽  
Makoto Miyata

ABSTRACT Mycoplasma mobile relies on an unknown mechanism to glide across solid surfaces including glass, animal cells, and plastics. To identify the direct binding target, we examined the factors that affect the binding of Mycoplasma pneumoniae to solid surfaces and concluded that N-acetylneuraminyllactose (sialyllactose) attached to a protein can mediate glass binding on the basis of the following four lines of evidence: (i) glass binding was inhibited by N-acetylneuraminidase, (ii) glass binding was inhibited by N-acetylneuraminyllactose in a structure-dependent manner, (iii) binding occurred on glass pretreated with bovine serum albumin attached to N-acetylneuraminyllactose, and (iv) gliding speed depended on the density of N-acetylneuraminyllactose on glass.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azusa Nakamoto ◽  
Masashi Harada ◽  
Reiko Mitsuhashi ◽  
Kimiyuki Tsuchiya ◽  
Alexey P. Kryukov ◽  
...  

AbstractQuaternary environmental changes fundamentally influenced the genetic diversity of temperate-zone terrestrial animals, including those in the Japanese Archipelago. The genetic diversity of present-day populations is taxon- and region-specific, but its determinants are poorly understood. Here, we analyzed cytochrome b gene (Cytb) sequences (1140 bp) of mitochondrial DNA (mtDNA) to elucidate the factors determining the genetic variation in three species of large moles: Mogera imaizumii and Mogera wogura, which occur in central and southern mainland Japan (Honshu, Shikoku, and Kyushu), and Mogera robusta, which occurs on the nearby Asian continent. Network construction with the Cytb sequences revealed 10 star-shaped clusters with apparent geographic affinity. Mismatch distribution analysis showed that modes of pairwise nucleotide differences (τ values) were grouped into five classes in terms of the level, implying the occurrence of five stages for rapid expansion. It is conceivable that severe cold periods and subsequent warm periods during the late Quaternary were responsible for the population expansion events. The first and third oldest events included island-derived haplotypes, indicative of the involvement of land bridge formation between remote islands, hence suggesting an association of the ends of the penultimate (PGM, ca. 130,000 years ago) and last (LGM, ca. 15,000 years ago) glacial maxima, respectively. Since the third event was followed by the fourth, it is plausible that the termination of the Younger Dryas and subsequent abrupt warming ca. 11,500 years ago facilitated the fourth expansion event. The second event most likely corresponded to early marine isotope stage (MIS) 3 (ca. 53,000 years ago) when the glaciation and subsequent warming period were predicted to have influenced biodiversity. Utilization of the critical times of 130,000, 53,000, 15,000, and 11,500 years ago as calibration points yielded evolutionary rates of 0.03, 0.045, 0.10 and 0.10 substitutions/site/million years, respectively, showing a time-dependent manner whose pattern was similar to that seen in small rodents reported in our previous studies. The age of the fifth expansion event was calculated to be 5800 years ago with a rate of 0.10 substitutions/site/million years ago during the mid-Holocene, suggestive of the influence of humans or other unspecified reasons, such as the Jomon marine transgression.


2020 ◽  
Vol 118 (2) ◽  
pp. e2016017118
Author(s):  
Tamar Szoke ◽  
Nitsan Albocher ◽  
Sutharsan Govindarajan ◽  
Anat Nussbaum-Shochat ◽  
Orna Amster-Choder

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


2008 ◽  
Vol 190 (23) ◽  
pp. 7808-7818 ◽  
Author(s):  
Gal Yerushalmi ◽  
Chen Nadler ◽  
Tatiana Berdichevski ◽  
Ilan Rosenshine

ABSTRACT The locus of enterocyte effacement (LEE) pathogenicity island of enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) comprises a cluster of operons encoding a type III secretion system and related proteins, all of which are essential for bacterial colonization of the host intestines. The LEE1 operon encodes Ler, which positively regulates many EPEC and EHEC virulence genes located in the LEE region and elsewhere in the chromosome. In addition, Ler is a specific autorepressor of LEE1 transcription. To better understand the function of Ler, we screened for Ler mutants defective in autorepression. We isolated 18 different point mutations in Ler, rendering it defective in autorepression and in DNA binding. Among these mutants were those defective in positive regulation as well as in autorepression, dominant-negative mutants, and a mutant deficient in oligomerization. Importantly, a group of Ler autorepression mutants complemented an EPEC ler deletion mutant for transcription activation in a dosage-dependent manner, suggesting that Ler and possibly other autorepressors have an intrinsic compensatory mechanism that enables them to sustain mutations. In addition, the phenotypes of the different mutants identified by the screen define a novel domain in Ler that is required for oligomerization.


2018 ◽  
Vol 67 (4) ◽  
pp. 691-702 ◽  
Author(s):  
Matthew J. Scheffel ◽  
Gina Scurti ◽  
Megan M. Wyatt ◽  
Elizabeth Garrett-Mayer ◽  
Chrystal M. Paulos ◽  
...  

2018 ◽  
Vol 13 (2) ◽  
pp. 1934578X1801300
Author(s):  
Xiu-cai Ma ◽  
Hui-qiang Ding ◽  
Jian-dang Shi ◽  
Long Hei ◽  
Ning-kui Niu ◽  
...  

Cinobufacini (huachansu) is a traditional Chinese medicine extracted from the skin of Bufo bufo gargarizans, which is used in clinical cancer therapy. The purpose of this study was to investigate the signaling pathways regulating cinobufacini-induced apoptosis in the osteosarcoma cell line, U2OS. We used 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the effects of cinobufacini on cell proliferation in U2OS cells. Changes in cell morphology and apoptosis were detected by TUNEL staining. The expression of apoptosis-related and Wnt/β-catenin pathway proteins was detected by immunofluorescence, RT-PCR, and western blot analysis. Our data indicated that cinobufacini significantly inhibited cell proliferation in a dose- and time-dependent manner. Marked changes in cell morphology and apoptosis rate were clearly observed after cinobufacini treatment. The Wnt/β-catenin pathway was activated, and β-catenin expression was positive in cells after treatment. Further, protein expression of bax was increased, whereas bcl-2 was decreased, resulting in an increased bax/bcl-2 ratio. Moreover, after cinobufacini treatment, the expression of Wnt/β-catenin pathway-related proteins was similar to controls. Taken together, our study indicates that cinobufacini can induce apoptosis in U2OS cells, likely through activating the Wnt/β-catenin pathway.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 150 ◽  
Author(s):  
Hyun Lim ◽  
Moon Park ◽  
Changmin Kim ◽  
Beomku Kang ◽  
Hyo-Sook Song ◽  
...  

Though Spatholobus suberectus Dunn (SSD) has been reported to have anti-virus, anti-osteoclastogenesis, and anti-inflammation activities, its underlying anti-cancer mechanism has never been elucidated in association with the role of miR-657 in endoplasmic reticulum (ER) stress-related apoptosis to date. SSD treatment exerted cytotoxicity in U266 and U937 cells in a dose-dependent manner. Also, apoptosis-related proteins such as PARP, procaspase-3, and Bax were regulated by SSD treatment. Furthermore, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed that a number of apoptotic bodies were increased by SSD. Interestingly, the ER stress-related proteins such as p-ATF2 and CHOP were elevated by SSD. Interestingly, reactive oxygen species (ROS) generation and cytotoxicity by SSD treatment were significantly reduced by N-Acetyl-L-cysteine (NAC). Among the microRNAs (miRNAs) regulated by SSD treatment, miR-657 was most significantly reduced by SSD treatment. However, an miR-657 mimic reversed SSD-induced apoptosis by the attenuation of the expression of p-ATF2, CHOP, and PARP cleavage. Overall, these findings provide scientific evidence that miR657 is an onco-miRNA targeting the ER stress signal pathway and SSD induces apoptosis via the inhibition of miR-657, ROS, and the activation of p-ATF2 and CHOP as a potent anti-cancer agent for myeloid-originated hematological cancer.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3170 ◽  
Author(s):  
Vika Gabe ◽  
Tomas Kacergius ◽  
Saleh Abu-Lafi ◽  
Mouhammad Zeidan ◽  
Basheer Abu-Farich ◽  
...  

The accumulation of biofilm by Streptococcus mutans bacteria on hard tooth tissues leads to dental caries, which remains one of the most prevalent oral diseases. Hence, the development of new antibiofilm agents is of critical importance. The current study reports the results from testing the effectiveness of octyl gallate (C8-OG) against: (1) S. mutans biofilm formation on solid surfaces (polystyrene, glass), (2) acidogenicity, (3) and the expression of biofilm-related genes. The amount of biofilm formed by S. mutans bacteria was evaluated using the colorimetric method and optical profilometry. The pH of the biofilm growth medium was measured with microelectrode. A quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the expression of genes encoding glucan binding protein B (gbpB), glucosyltransferases B, -C, -D (gtfB, -C, -D), and the F-ATPase β subunit of the F1 protein (atpD). The results show that C8-OG significantly diminished biofilm formation by exposed S. mutans on solid surfaces and suppressed acidogenicity in a dose-dependent manner, compared to unexposed bacteria (p < 0.05). The C8-OG concentration of 100.24 µM inhibited S. mutans biofilm development on solid surfaces by 100% and prevented a decrease in pH levels by 99%. In addition, the RT-qPCR data demonstrate that the biofilm-producing bacteria treated with C8-OG underwent a significant reduction in gene expression in the case of the four genes under study (gbpB, gtfC, gtfD, and atpD), and there was a slight decrease in expression of the gtfB gene. However, C8-OG treatments did not produce significant expression change compared to the control for the planktonic cells, although there was a significant increase for the atpD gene. Therefore, C8-OG might be a potent antibiofilm and/or anticaries agent for oral formulations that aim to reduce the prevalence of dental caries.


Sign in / Sign up

Export Citation Format

Share Document