scholarly journals Engineered CRISPR/Cas13d Sensing hTERT Selectively Inhibits the Progression of Bladder Cancer In Vitro

2021 ◽  
Vol 8 ◽  
Author(s):  
Chengle Zhuang ◽  
Changshui Zhuang ◽  
Qun Zhou ◽  
Xueting Huang ◽  
Yaoting Gui ◽  
...  

Aptazyme and CRISPR/Cas gene editing system were widely used for regulating gene expression in various diseases, including cancer. This work aimed to reconstruct CRISPR/Cas13d tool for sensing hTERT exclusively based on the new device OFF-switch hTERT aptazyme that was inserted into the 3’ UTR of the Cas13d. In bladder cancer cells, hTERT ligand bound to aptamer in OFF-switch hTERT aptazyme to inhibit the degradation of Cas13d. Results showed that engineered CRISPR/Cas13d sensing hTERT suppressed cell proliferation, migration, invasion and induced cell apoptosis in bladder cancer 5637 and T24 cells without affecting normal HFF cells. In short, we constructed engineered CRISPR/Cas13d sensing hTERT selectively inhibited the progression of bladder cancer cells significantly. It may serve as a promising specifically effective therapy for bladder cancer cells.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jinan Guo ◽  
Zhixin Chen ◽  
Hongtao Jiang ◽  
Zhou Yu ◽  
Junming Peng ◽  
...  

Abstract Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.


2018 ◽  
Vol 51 (2) ◽  
pp. 513-527 ◽  
Author(s):  
Junfeng Zhang ◽  
Longsheng Wang ◽  
Shiyu Mao ◽  
Mengnan Liu ◽  
Wentao Zhang ◽  
...  

Background/Aims: Increasing evidence showed that miR-1-3p plays a major role in malignant tumor progression. However, the specific biological function of miR-1-3p in bladder cancer is yet unknown. Methods: The expression levels of miR-1-3p in bladder cancer tissues and cell lines were examined by qRT-PCR. Bisulfite sequencing PCR was used for DNA methylation analysis. The target of miR-1-3p was validated by a dual luciferase reporter assay, and the effects of miR-1-3p on phenotypic changes in bladder cancer cells were investigated in vitro and in vivo. Results: The expression of miR-1-3p in bladder cancer cells was downregulated as compared to normal SV-HUC-1 cells. Also, the expression of miR-1-3p was significantly lower in bladder cancer tissues than the corresponding non-cancerous tissues. The methylation status of CpG islands was involved in the regulation of miR-1-3p expression. miR-1-3p inhibited the bladder cancer cell proliferation, migration, and invasion by directly targeting the 3’-UTR of glutaminase. It also exerted an anti-tumor effect by negatively regulating the glutaminase in a xenograft mouse model. Furthermore, GLS depletion resulted in the prolonged expression of γH2AX. Conclusion: Taken together, these results demonstrated that miR-1-3p acts as a tumor suppressor via regulation of glutaminase expression in bladder cancer progression, and miR-1-3p might represent a novel therapeutic target for the treatment of bladder cancer.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21038-21038 ◽  
Author(s):  
N. S. Awsare ◽  
T. A. Martin ◽  
H. G. Kynaston ◽  
R. E. Mansel ◽  
P. N. Matthews ◽  
...  

21038 Background: An increasing body of evidence suggests that tight junctions (TJ) play an important role in invasion and metastasis. Claudins (Cl), a group of integral membrane proteins play an important role in maintaining TJ structure and function. Hepatocyte growth factor (HGF) has been shown to disrupt TJ structure. We investigated the effect of forced overexpression of Cl-11 on TJ function and invasive potential of T24 bladder cancer cells, in response to HGF. Methods: Expression of Cl-11 in bladder cancer cells was determined by RT-PCR. Cl-11 expression construct was made from full length human Cl-11 obtained from normal human cDNA bank, using pcDNA 3.1/ NT-GFP-TOPO expression vector. T24 cells were transfected with the resultant expression cassette (T24Cl-11) or an empty plasmid control (T24GFP). Change in TJ function of stably transfected cells was assessed by trans-urothelial resistance (TUR). In- vitro matrigel adhesion and invasion assays were used to determine the malignant potential of the cells. Cells were treated with HGF at 50 ng/ml for TUR and invasion assay. Immunofluorescence was used to localise Cl-11 within the cell. Results: Successful transfection of T24 cells was confirmed by endogenous GFP fluorescence and by an enhanced Cl-11 mRNA signal in T24Cl-11 compared to wild- type (T24WT) or T24GFP. There was no difference in TUR between the three cell types. Adhesion was significantly higher in T24Cl-11 than in T24GFP [median (IQR); 0.11 (0.096–0.137) vs 0.095 (0.089- 0.115), p=0.045]. T24Cl-11 cells had significantly reduced invasiveness in response to HGF, compared to T24GFP [mean (95% CI); 2.4 (1.8–3.01) vs 3.31 (2.89–3.71), p=0.032]. Immunoflourescence staining with Cl-11 showed redistribution of Cl-11 protein to the cytoplasm and perinuclear regions. Conclusion: Cl-11does not appear to be involved in the TJ function in T24 bladder cancer cells; however, its cytoplasmic location and its effect on the metastatic potential of these cells suggests that it may have a role in modulating the cytoskeletal or signalling network of the cell. Further studies are required to elucidate the exact mechanisms involved. No significant financial relationships to disclose.


2004 ◽  
Vol 171 (6 Part 1) ◽  
pp. 2471-2476 ◽  
Author(s):  
SUSANNE FUESSEL ◽  
BERND KUEPPERS ◽  
SHUANGLI NING ◽  
MATTHIAS KOTZSCH ◽  
KAI KRAEMER ◽  
...  

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


2019 ◽  
Vol 14 (1) ◽  
pp. 440-447
Author(s):  
Chunhui Dong ◽  
Yihui Liu ◽  
Guiping Yu ◽  
Xu Li ◽  
Ling Chen

AbstractLBHD1 (C11ORF48) is one of the ten potential tumor antigens identified by immunoscreening the urinary bladder cancer cDNA library in our previous study. We suspect that its expression is associated with human bladder cancer. However, the exact correlation remains unclear. To address the potential functional relationship between LBHD1 and bladder cancer, we examined the LBHD1 expression at the mRNA and protein level in 5 different bladder cancer cell lines: J82, T24, 253J, 5637, and BLZ-211. LBHD1 high and low expressing cells were used to investigate the migration, invasion, and proliferation of bladder cancer cells following transfection of LBHD1 with siRNA and plasmids, respectively. Our experiment showed that the degree of gene expression was positively related to the migration and invasion of the cancer cells while it had little effect on cell proliferation. Knocking down LBHD1 expression with LBHD1 siRNA significantly attenuated cell migration and invasion in cultured bladder cancer cells, and overexpressing LBHD1 with LBHD1 cDNA plasmids exacerbated cell migration and invasion. Nevertheless, a difference in cell proliferation after transfection of LBHD1 siRNA and LBHD1 cDNA plasmids was not found. Our findings suggest that LBHD1 might play a role in cell migration and invasion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Hong Lai ◽  
Chiung-Yao Fang ◽  
Ming-Chieh Chou ◽  
Mien-Chun Lin ◽  
Cheng-Huang Shen ◽  
...  

AbstractThe ultimate goal of gene delivery vectors is to establish specific and effective treatments for human diseases. We previously demonstrated that human JC polyomavirus (JCPyV) virus-like particles (VLPs) can package and deliver exogenous DNA into susceptible cells for gene expression. For tissue-specific targeting in this study, JCPyV VLPs were conjugated with a specific peptide for bladder cancer (SPB) that specifically binds to bladder cancer cells. The suicide gene thymidine kinase was packaged and delivered by SPB-conjugated VLPs (VLP-SPBs). Expression of the suicide gene was detected only in human bladder cancer cells and not in lung cancer or neuroblastoma cells susceptible to JCPyV VLP infection in vitro and in vivo, demonstrating the target specificity of VLP-SPBs. The gene transduction efficiency of VLP-SPBs was approximately 100 times greater than that of VLPs without the conjugated peptide. JCPyV VLPs can be specifically guided to target particular cell types when tagged with a ligand molecule that binds to a cell surface marker, thereby improving gene therapy.


Sign in / Sign up

Export Citation Format

Share Document