scholarly journals LBX2-AS1 as a Novel Diagnostic Biomarker and Therapeutic Target Facilitates Multiple Myeloma Progression by Enhancing mRNA Stability of LBX2

2021 ◽  
Vol 8 ◽  
Author(s):  
Haipeng Jia ◽  
Yan Liu ◽  
Sulong Lv ◽  
Ruifang Qiao ◽  
Xiaofen Zhang ◽  
...  

Objective: Multiple myeloma (MM) represents a common age-associated malignancy globally. The function and underlying mechanism of antisense lncRNA LBX2-AS1 remain ambiguous in multiple myeloma (MM). Herein, we aimed to observe the biological implication of this lncRNA in MM.Methods: RT-qPCR was employed to examine circulating LBX2-AS1 and LBX2 in 60 paired MM and healthy subjects. Correlation between the two was analyzed by Pearson test. Under transfection with shLBX2-AS1, proliferation and apoptosis were evaluated in MM cells through CCK-8, colony formation and flow cytometry. LBX2 expression was examined in MM cells with shLBX2-AS1 or pcDNA3.1-LBX2 transfection. Following treatment with cycloheximide or actinomycin D, LBX2 expression was examined in pcDNA3.1-LBX2-transfected MM cells at different time points. Rescue assays were then presented. Finally, xenograft tumor models were established.Results: Circulating LBX2-AS1 was up-regulated in MM patients and positively correlated to LBX2 expression. Area under the curve (AUC) of LBX2-AS1 expression was 0.7525. Its up-regulation was also found in MM cells and primarily distributed in cytoplasm. LBX2-AS1 knockdown distinctly weakened proliferative ability and induced apoptosis in MM cells. Overexpressing LBX2-AS1 markedly strengthened LBX2 expression by increasing its mRNA stability. Rescue assays showed that silencing LBX2-AS1 distinctly weakened the pcDNA3.1-LBX2-induced increase in proliferation and decrease in apoptosis for MM cells. Silencing LBX2-AS1 markedly weakened tumor growth.Conclusion: Our data demonstrated that circulating LBX2-AS1 could be an underlying diagnostic marker in MM. Targeting LBX2-AS1 suppressed tumor progression by affecting mRNA stability of LBX2 in MM. Hence, LBX2-AS1 could be a novel therapeutic marker against MM.

2020 ◽  
Vol 19 (4) ◽  
pp. 745-749
Author(s):  
Hongqing Zhu ◽  
Yejun Si ◽  
Yun Zhuang ◽  
Meng Li ◽  
Jianmin Ji ◽  
...  

Purpose: To identify the biological function of phosphoserine aminotransferase 1 (PSAT1) in regulating cell proliferation and apoptosis in multiple myeloma (MM).Methods: The mRNA and protein levels of PSAT1 were determined using quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. Cell proliferation was measured using CCK-8 assay.Results: PSAT1 mRNA and protein expression levels were significantly increased in MM cell lines when compared to control cells. Moreover,  downregulation of PSAT1 inhibited MM cell proliferation and induced cell apoptosis, whereas overexpression of PSAT1 promoted MM cell  proliferation and suppressed cell apoptosis. Further analysis demonstrated that the underlying mechanism was via regulation of PI3K/AKT pathway.Conclusion: The results identified a novel role for PSAT1 in the progression of MM, which may provide a therapeutic and a new anticancer target for the therapy of MM. Keywords: Multiple myeloma, PSAT1, Cell proliferation, PI3K/AKT pathway


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Ruyi Xu ◽  
Yi Li ◽  
Haimeng Yan ◽  
Enfan Zhang ◽  
Xi Huang ◽  
...  

Abstract We previously showed that the chemokine CCL2 can recruit macrophages (Mφs) to the bone marrow (BM) in multiple myeloma (MM) and that myeloma-associated Mφs are important in drug resistance. Here, we explore the role of increased CCL2 expression in the BM microenvironment of MM and elucidate the underlying mechanism. Our results show that CCL2 expression is associated with the treatment status of MM patients. Mφs interact with MM cells and further upregulate their expression of CCL2. These increased level of CCL2 polarizes Mφs toward the M2-like phenotype and promotes Mφs to protect MM cells from drug-induced apoptosis. Mechanistically, CCL2 upregulated the expression of the immunosuppressive molecular MCP-1-induced protein (MCPIP1) in Mφs. MCPIP1 mediates Mφs’ polarization and protection via dual catalytic activities. Additionally, we found that CCL2 induces MCPIP1 expression via the JAK2-STAT3 signaling pathway. Taken together, our results indicate that increased CCL2 expression in MM patients’ BM polarizes Mφs toward the M2-like phenotype and promotes the protective effect of Mφs through MCPIP1, providing novel insight into the mechanism of Mφs-mediated drug resistance in MM.


2019 ◽  
Vol 17 (4) ◽  
pp. 463-469
Author(s):  
Hou Deqiang ◽  
Gao Yufeng ◽  
Bai Ning ◽  
Dong Yu

Isoliquiritigenin is a flavonoid commonly found in liquorice and has been identified as a potent anti-tumor agent. The aim of this study was to investigate whether isoliquiritigenin regulates the proliferation and apoptosis of tongue squamous cell carcinoma cells by regulating forkhead box G1 expression via miR-21. MTT assay and flow cytometry were used to analyze cell proliferation and apoptosis, respectively. Quantitative real time polymerase chain reaction and western blotting were used to detect mRNA and protein expression levels, respectively. The relationship between miR-21 and forkhead box G1 was detected by dual luciferase assay. Isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells, and decreased miR-21 levels and promoted forkhead box G1 expression. Forkhead box G1 was then identified as a target of miR-21 and ISL could promote forkhead box G1 expression by inhibiting miR-21. Further analysis suggested that upregulation of miR-21 improved proliferation and suppressed apoptosis of tongue squamous cell carcinoma cells by inhibiting forkhead box G1 expression. Finally, our results revealed that isoliquiritigenin inhibited proliferation and induced apoptosis of tongue squamous cell carcinoma cells by regulating miR-21. Isoliquiritigenin might act as a novel therapeutic treatment for tongue squamous cell carcinoma cells through up-regulation of forkhead box G1 expression via inhibiting miR-21expression.


2018 ◽  
Author(s):  
Weilong Zhang ◽  
Rui Lai ◽  
Xue He ◽  
Xiaoni Liu ◽  
Ye Zhang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eui Jeong Han ◽  
Seo-Young Kim ◽  
Hee-Jin Han ◽  
Hyun-Soo Kim ◽  
Kil-Nam Kim ◽  
...  

AbstractThe present study aimed to evaluate the protective effect of a methanol extract of Sargassum horneri (SHM), which contains 6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydrobenzofuran-2(4H)-one (HTT) and apo-9′-fucoxanthinone, against ultraviolet B (UVB)-induced cellular damage in human keratinocytes and its underlying mechanism. SHM significantly improved cell viability of UVB-exposed human keratinocytes by reducing the generation of intracellular reactive oxygen species (ROS). Moreover, SHM inhibited UVB exposure-induced apoptosis by reducing the formation of apoptotic bodies and the populations of the sub-G1 hypodiploid cells and the early apoptotic cells by modulating the expression of the anti- and pro-apoptotic molecules, Bcl-2 and Bax, respectively. Furthermore, SHM inhibited NF-κB p65 activation by inducing the activation of Nrf2/HO-1 signaling. The cytoprotective and antiapoptotic activities of SHM are abolished by the inhibition of HO-1 signaling. In further study, SHM restored the skin dryness and skin barrier disruption in UVB-exposed human keratinocytes. Based to these results, our study suggests that SHM protects the cells against UVB-induced cellular damages through the Nrf2/HO-1/NF-κB p65 signaling pathway and may be potentially useful for the prevention of UVB-induced skin damage.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Haiping Zhang ◽  
Ziliang Yu ◽  
Farui Sun ◽  
Jin Jin

Abstract Background The purpose of the current study was to explore the role and underlying mechanism of cellular retinoic acid binding protein 2 (CRABP2) in dexamethasone (DEX)-induced apoptosis in human osteoblast cells. Methods GSE10311 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. Primary human osteoblast was isolated and treated with different concentration of DEX (0, 10-8, 10-7, 10-6, 10-5, and 10-4 mol/L), and cell viability and flow cytometry were used to detect cell proliferation and apoptosis. A CRABP2 overexpression plasmid (oe-CRABP2) was used to overexpress CRABP2, and western blotting was conducted to detect protein expression. Results We found that CRABP2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated CRABP2 gene and protein expression, inhibited viability, and induced human osteoblast apoptosis. Overexpression of CRABP2 reversed DEX-induced apoptosis in human osteoblast. Moreover, overexpression of CRABP2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model. Conclusion In conclusion, CRABP2 is effective at inhibiting DEX-induced human osteoblast apoptosis and delayed ONFH progression.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Dharminder Chauhan ◽  
Surender Kharbanda ◽  
Atsushi Ogata ◽  
Mitsuyoshi Urashima ◽  
Gerrard Teoh ◽  
...  

Abstract Fas belongs to the family of type-1 membrane proteins that transduce apoptotic signals. In the present studies, we characterized signaling during Fas-induced apoptosis in RPMI-8226 and IM-9 multiple myeloma (MM) derived cell lines as well as patient plasma cell leukemia cells. Treatment with anti-Fas (7C11) monoclonal antibody (MoAb) induced apoptosis, evidenced by internucleosomal DNA fragmentation and propidium iodide staining, and was associated with increased expression of c-jun early response gene. We also show that anti-Fas MoAb treatment is associated with activation of stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (MAPK); however, no detectable increase in extracellular signal-regulated kinases (ERK1 and ERK2) activity was observed. Because interleukin-6 (IL-6) is a growth factor for MM cells and inhibits apoptosis induced by dexamethasone and serum starvation, we examined whether IL-6 affects anti-Fas MoAb-induced apoptosis and activation of SAPK or p38 MAPK in MM cells. Culture of MM cells with IL-6 before treatment with anti-Fas MoAb significantly reduced both DNA fragmentation and activation of SAPK, without altering induction of p38 MAPK activity. These results therefore suggest that anti-Fas MoAb-induced apoptosis in MM cells is associated with activation of SAPK, and that IL-6 may both inhibit apoptosis and modulate SAPK activity.


Blood ◽  
2004 ◽  
Vol 104 (8) ◽  
pp. 2458-2466 ◽  
Author(s):  
Dharminder Chauhan ◽  
Guilan Li ◽  
Klaus Podar ◽  
Teru Hideshima ◽  
Constantine Mitsiades ◽  
...  

Abstract Bortezomib (PS-341), a selective inhibitor of proteasomes, induces apoptosis in multiple myeloma (MM) cells; however, prolonged drug exposure may result in cumulative toxicity and the development of chemoresistance. Here we show that combining PK-11195 (PK), an antagonist to mitochondrial peripheral benzodiazepine receptors (PBRs), with bortezomib triggers synergistic anti-MM activity even in doxorubicin-, melphalan-, thalidomide-, dexamethasone-, and bortezomib-resistant MM cells. No significant cytotoxicity was noted in normal lymphocytes. Low-dose combined PK and bortezomib treatment overcomes the growth, survival, and drug resistance conferred by interleukin-6 or insulin growth factor within the MM bone marrow milieu. The mechanism of PK + bortezomib–induced apoptosis includes: loss of mitochondrial membrane potential; superoxide generation; release of mitochondrial proteins cytochrome-c (cyto-c) and Smac; and activation of caspases-8/-9/-3. Furthermore, PK + bortezomib activates c-Jun NH2 terminal kinase (JNK), which translocates to mitochondria, thereby facilitating release of cyto-c and Smac from mitochondria to cytosol. Blocking JNK, by either dominant-negative mutant (DN-JNK) or cotreatment with a specific JNK inhibitor SP600125, abrogates both PK + bortezomib–induced release of cyto-c/Smac and induction of apoptosis. Together, these preclinical studies suggest that combining bortezomib with PK may enhance its clinical efficacy, reduce attendant toxicity, and overcome conventional and bortezomib resistance in patients with relapsed refractory MM.


Sign in / Sign up

Export Citation Format

Share Document