scholarly journals Mapping Network Activity in Sleep

2021 ◽  
Vol 15 ◽  
Author(s):  
Priyattam J. Shiromani ◽  
Carlos Blanco-Centurion ◽  
Aurelio Vidal-Ortiz

It was in the influenza pandemic of 1918 that von Economo identified specific brain regions regulating sleep and wake. Since then researchers have used a variety of tools to determine how the brain shifts between states of consciousness. In every enterprise new tools have validated existing data, corrected errors and made new discoveries to advance science. The brain is a challenge but new tools can disentangle the brain network. We summarize the newest tool, a miniature microscope, that provides unprecedented view of activity of glia and neurons in freely behaving mice. With this tool we have observed that the activity of a majority of GABA and MCH neurons in the lateral hypothalamus is heavily biased toward sleep. We suggest that miniscope data identifies activity at the cellular level in normal versus diseased brains, and also in response to specific hypnotics. Shifts in activity in small networks across the brain will help identify point of criticality that switches the brain from wake to sleep.

2020 ◽  
Author(s):  
Stephen D. Mague ◽  
Austin Talbot ◽  
Cameron Blount ◽  
Lara J. Duffney ◽  
Kathryn K. Walder-Christensen ◽  
...  

AbstractMany cortical and subcortical regions contribute to complex social behavior; nevertheless, the network level architecture whereby the brain integrates this information to encode appetitive socioemotional behavior remains unknown. Here we measure electrical activity from eight brain regions as mice engage in a social preference assay. We then use machine learning to discover an explainable brain network that encodes the extent to which mice chose to engage another mouse. This socioemotional network is organized by theta oscillations leading from prelimbic cortex and amygdala that converge on ventral tegmental area, and network activity is synchronized with brain-wide cellular firing. The network generalizes, on a mouse-by-mouse basis, to encode socioemotional behaviors in healthy animals, but fails to encode an appetitive socioemotional state in a ‘high confidence’ genetic mouse model of autism. Thus, our findings reveal the architecture whereby the brain integrates spatially distributed activity across timescales to encode an appetitive socioemotional brain state in health and disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kosuke Takagi

AbstractEnergy constraints are a fundamental limitation of the brain, which is physically embedded in a restricted space. The collective dynamics of neurons through connections enable the brain to achieve rich functionality, but building connections and maintaining activity come at a high cost. The effects of reducing these costs can be found in the characteristic structures of the brain network. Nevertheless, the mechanism by which energy constraints affect the organization and formation of the neuronal network in the brain is unclear. Here, it is shown that a simple model based on cost minimization can reproduce structures characteristic of the brain network. With reference to the behavior of neurons in real brains, the cost function was introduced in an activity-dependent form correlating the activity cost and the wiring cost as a simple ratio. Cost reduction of this ratio resulted in strengthening connections, especially at highly activated nodes, and induced the formation of large clusters. Regarding these network features, statistical similarity was confirmed by comparison to connectome datasets from various real brains. The findings indicate that these networks share an efficient structure maintained with low costs, both for activity and for wiring. These results imply the crucial role of energy constraints in regulating the network activity and structure of the brain.


2018 ◽  
Vol 1 ◽  
Author(s):  
Yoed N. Kenett ◽  
Roger E. Beaty ◽  
John D. Medaglia

AbstractRumination and impaired inhibition are considered core characteristics of depression. However, the neurocognitive mechanisms that contribute to these atypical cognitive processes remain unclear. To address this question, we apply a computational network control theory approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how network control theory relates to individual differences in subclinical depression. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that subclinical depression is negatively related to higher integration abilities in the right anterior insula, replicating and extending previous studies implicating atypical switching between the default mode and Executive Control Networks in depression. We also find that subclinical depression is related to the ability to “drive” the brain system into easy to reach neural states in several brain regions, including the bilateral lingual gyrus and lateral occipital gyrus. These findings highlight brain regions less known in their role in depression, and clarify their roles in driving the brain into different neural states related to depression symptoms.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008418
Author(s):  
Thomas F. Varley ◽  
Olaf Sporns ◽  
Aina Puce ◽  
John Beggs

Whether the brain operates at a critical “tipping” point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as “dissociative anaesthesia”). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.


2021 ◽  
Vol 15 ◽  
Author(s):  
Paolo Finotelli ◽  
Carlo Piccardi ◽  
Edie Miglio ◽  
Paolo Dulio

In this paper, we propose a graphlet-based topological algorithm for the investigation of the brain network at resting state (RS). To this aim, we model the brain as a graph, where (labeled) nodes correspond to specific cerebral areas and links are weighted connections determined by the intensity of the functional magnetic resonance imaging (fMRI). Then, we select a number of working graphlets, namely, connected and non-isomorphic induced subgraphs. We compute, for each labeled node, its Graphlet Degree Vector (GDV), which allows us to associate a GDV matrix to each one of the 133 subjects of the considered sample, reporting how many times each node of the atlas “touches” the independent orbits defined by the graphlet set. We focus on the 56 independent columns (i.e., non-redundant orbits) of the GDV matrices. By aggregating their count all over the 133 subjects and then by sorting each column independently, we obtain a sorted node table, whose top-level entries highlight the nodes (i.e., brain regions) most frequently touching each of the 56 independent graphlet orbits. Then, by pairwise comparing the columns of the sorted node table in the top-k entries for various values of k, we identify sets of nodes that are consistently involved with high frequency in the 56 independent graphlet orbits all over the 133 subjects. It turns out that these sets consist of labeled nodes directly belonging to the default mode network (DMN) or strongly interacting with it at the RS, indicating that graphlet analysis provides a viable tool for the topological characterization of such brain regions. We finally provide a validation of the graphlet approach by testing its power in catching network differences. To this aim, we encode in a Graphlet Correlation Matrix (GCM) the network information associated with each subject then construct a subject-to-subject Graphlet Correlation Distance (GCD) matrix based on the Euclidean distances between all possible pairs of GCM. The analysis of the clusters induced by the GCD matrix shows a clear separation of the subjects in two groups, whose relationship with the subject characteristics is investigated.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Author(s):  
Ole Adrian Heggli ◽  
Ivana Konvalinka ◽  
Joana Cabral ◽  
Elvira Brattico ◽  
Morten L Kringelbach ◽  
...  

Abstract Interpersonal coordination is a core part of human interaction, and its underlying mechanisms have been extensively studied using social paradigms such as joint finger-tapping. Here, individual and dyadic differences have been found to yield a range of dyadic synchronization strategies, such as mutual adaptation, leading–leading, and leading–following behaviour, but the brain mechanisms that underlie these strategies remain poorly understood. To identify individual brain mechanisms underlying emergence of these minimal social interaction strategies, we contrasted EEG-recorded brain activity in two groups of musicians exhibiting the mutual adaptation and leading–leading strategies. We found that the individuals coordinating via mutual adaptation exhibited a more frequent occurrence of phase-locked activity within a transient action–perception-related brain network in the alpha range, as compared to the leading–leading group. Furthermore, we identified parietal and temporal brain regions that changed significantly in the directionality of their within-network information flow. Our results suggest that the stronger weight on extrinsic coupling observed in computational models of mutual adaptation as compared to leading–leading might be facilitated by a higher degree of action–perception network coupling in the brain.


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


Author(s):  
Davide Valeriani ◽  
Kristina Simonyan

Speech production relies on the orchestrated control of multiple brain regions. The specific, directional influences within these networks remain poorly understood. We used regression dynamic causal modelling to infer the whole-brain directed (effective) connectivity from functional magnetic resonance imaging data of 36 healthy individuals during the production of meaningful English sentences and meaningless syllables. We identified that the two dynamic connectomes have distinct architectures that are dependent on the complexity of task production. The speech was regulated by a dynamic neural network, the most influential nodes of which were centred around superior and inferior parietal areas and influenced the whole-brain network activity via long-ranging coupling with primary sensorimotor, prefrontal, temporal and insular regions. By contrast, syllable production was controlled by a more compressed, cost-efficient network structure, involving sensorimotor cortico-subcortical integration via superior parietal and cerebellar network hubs. These data demonstrate the mechanisms by which the neural network reorganizes the connectivity of its influential regions, from supporting the fundamental aspects of simple syllabic vocal motor output to multimodal information processing of speech motor output. This article is part of the theme issue ‘Vocal learning in animals and humans’.


2020 ◽  
Author(s):  
Minkyung Kim ◽  
Hyoungkyu Kim ◽  
Zirui Huang ◽  
George A. Mashour ◽  
Denis Jordan ◽  
...  

AbstractContinuous switching between internal and external modes in the brain is a key process of constructing inner models of the outside world. However, how the brain continuously switches between two modes remains elusive. Here, we propose that a large synchronization fluctuation of the brain network emerging only near criticality (i.e., a balanced state between order and disorder) spontaneously creates temporal windows with distinct preferences for integrating internal information of the network and external stimuli. Using a computational model and empirical data analysis during alterations of consciousness in human, we present that synchronized and incoherent networks respectively bias toward internal and external information with specific network configurations. The network preferences are the most prominent in conscious states; however, they disrupt in altered states of consciousness. We suggest that criticality produces a functional platform of the brain’s capability for continuous switching between two modes, which is crucial for the emergence of consciousness.


Sign in / Sign up

Export Citation Format

Share Document