scholarly journals Ear-Specific Hemispheric Asymmetry in Unilateral Deafness Revealed by Auditory Cortical Activity

2021 ◽  
Vol 15 ◽  
Author(s):  
Ji-Hye Han ◽  
Jihyun Lee ◽  
Hyo-Jeong Lee

Profound unilateral deafness reduces the ability to localize sounds achieved via binaural hearing. Furthermore, unilateral deafness promotes a substantial change in cortical processing to binaural stimulation, thereby leading to reorganization over the whole brain. Although distinct patterns in the hemispheric laterality depending on the side and duration of deafness have been suggested, the neurological mechanisms underlying the difference in relation to behavioral performance when detecting spatially varied cues remain unknown. To elucidate the mechanism, we compared N1/P2 auditory cortical activities and the pattern of hemispheric asymmetry of normal hearing, unilaterally deaf (UD), and simulated acute unilateral hearing loss groups while passively listening to speech sounds delivered from different locations under open free field condition. The behavioral performances of the participants concerning sound localization were measured by detecting sound sources in the azimuth plane. The results reveal a delayed reaction time in the right-sided UD (RUD) group for the sound localization task and prolonged P2 latency compared to the left-sided UD (LUD) group. Moreover, the RUD group showed adaptive cortical reorganization evidenced by increased responses in the hemisphere ipsilateral to the intact ear for individuals with better sound localization whereas left-sided unilateral deafness caused contralateral dominance in activity from the hearing ear. The brain dynamics of right-sided unilateral deafness indicate greater capability of adaptive change to compensate for impairment in spatial hearing. In addition, cortical N1 responses to spatially varied speech sounds in unilateral deaf people were inversely related to the duration of deafness in the area encompassing the right auditory cortex, indicating that early intervention would be needed to protect from maladaptation of the central auditory system following unilateral deafness.

2021 ◽  
Author(s):  
Ji-Hye Han ◽  
Jihyun Lee ◽  
Hyo-Jeong Lee

Abstract Profound unilateral deafness reduces the ability to detect the location of sounds, which is achieved with binaural hearing. Furthermore, the findings from previous studies have shown that unilateral deafness can cause a substantial change in the pattern of cortical activation, thereby leading to central reorganization in the whole brain. In the present study, we compared N1/P2 auditory cortical activities and the pattern of hemispheric asymmetry of normal hearing, unilaterally deaf, and simulated acute unilateral hearing loss groups during passively listening to speech sounds at different locations. The results show that P2 latencies were prolonged for left-side stimulation with greater angles in the horizontal plane. In the source analysis, a differential lateralization pattern was revealed such that the N1 source activation in the normal hearing subjects was greater in the left hemisphere, while contralateral activity was found in response to the stimulated side for the right-sided deaf and simulated acute hearing loss groups. However, no hemispheric lateralization was found for the left-sided deaf or simulated acute hearing loss groups. In addition, the cortical N1/P2 activities were inversely related to the duration of deafness in the right auditory region. These findings indicate that the cortical reorganization induced by monaural hearing deprivation differs depending on the side and duration of deafness.


2019 ◽  
Vol 23 (03) ◽  
pp. e276-e280
Author(s):  
Gleide Viviani Maciel Almeida ◽  
Angela Ribas ◽  
Jorge Calleros

Introduction Even people with normal hearing may have difficulties locating a sound source in unfavorable sound environments where competitive noise is intense. Objective To develop, describe, validate and establish the normality curve of the sound localization test. Method The sample consisted of 100 healthy subjects with normal hearing, > 18 years old, who agreed to participate in the study. The sound localization test was applied after the subjects underwent a tonal audiometry exam. For this purpose, a calibrated free field test environment was set up. Then, 30 random pure tones were presented in 2 speakers placed at 45° (on the right and on the left sides of the subject), and the noise was presented from a 3rd speaker, placed at 180°. The noise was presented in 3 hearing situations: optimal listening condition (no noise), noise in relation to 0 dB, and noise in relation to - 10 dB. The subject was asked to point out the side where the pure tone was being perceived, even in the presence of noise. Results All of the 100 participants performed the test in an average time of 99 seconds. The average score was 21, the medium score was 23, and the standard deviation was 3.05. Conclusion The sound localization test proved to be easy to set-up and to apply. The results obtained in the validation of the test suggest that individuals with normal hearing should locate 70% of the presented stimuli. The test can constitute an important instrument in the measurement of noise interference in the ability to locate the sound.


2019 ◽  
Vol 30 (08) ◽  
pp. 659-671 ◽  
Author(s):  
Ashley Zaleski-King ◽  
Matthew J. Goupell ◽  
Dragana Barac-Cikoja ◽  
Matthew Bakke

AbstractBilateral inputs should ideally improve sound localization and speech understanding in noise. However, for many bimodal listeners [i.e., individuals using a cochlear implant (CI) with a contralateral hearing aid (HA)], such bilateral benefits are at best, inconsistent. The degree to which clinically available HA and CI devices can function together to preserve interaural time and level differences (ITDs and ILDs, respectively) enough to support the localization of sound sources is a question with important ramifications for speech understanding in complex acoustic environments.To determine if bimodal listeners are sensitive to changes in spatial location in a minimum audible angle (MAA) task.Repeated-measures design.Seven adult bimodal CI users (28–62 years). All listeners reported regular use of digital HA technology in the nonimplanted ear.Seven bimodal listeners were asked to balance the loudness of prerecorded single syllable utterances. The loudness-balanced stimuli were then presented via direct audio inputs of the two devices with an ITD applied. The task of the listener was to determine the perceived difference in processing delay (the interdevice delay [IDD]) between the CI and HA devices. Finally, virtual free-field MAA performance was measured for different spatial locations both with and without inclusion of the IDD correction, which was added with the intent to perceptually synchronize the devices.During the loudness-balancing task, all listeners required increased acoustic input to the HA relative to the CI most comfortable level to achieve equal interaural loudness. During the ITD task, three listeners could perceive changes in intracranial position by distinguishing sounds coming from the left or from the right hemifield; when the CI was delayed by 0.73, 0.67, or 1.7 msec, the signal lateralized from one side to the other. When MAA localization performance was assessed, only three of the seven listeners consistently achieved above-chance performance, even when an IDD correction was included. It is not clear whether the listeners who were able to consistently complete the MAA task did so via binaural comparison or by extracting monaural loudness cues. Four listeners could not perform the MAA task, even though they could have used a monaural loudness cue strategy.These data suggest that sound localization is extremely difficult for most bimodal listeners. This difficulty does not seem to be caused by large loudness imbalances and IDDs. Sound localization is best when performed via a binaural comparison, where frequency-matched inputs convey ITD and ILD information. Although low-frequency acoustic amplification with a HA when combined with a CI may produce an overlapping region of frequency-matched inputs and thus provide an opportunity for binaural comparisons for some bimodal listeners, our study showed that this may not be beneficial or useful for spatial location discrimination tasks. The inability of our listeners to use monaural-level cues to perform the MAA task highlights the difficulty of using a HA and CI together to glean information on the direction of a sound source.


2019 ◽  
Vol 23 ◽  
pp. 233121651984733 ◽  
Author(s):  
Sebastian A. Ausili ◽  
Bradford Backus ◽  
Martijn J. H. Agterberg ◽  
A. John van Opstal ◽  
Marc M. van Wanrooij

Bilateral cochlear-implant (CI) users and single-sided deaf listeners with a CI are less effective at localizing sounds than normal-hearing (NH) listeners. This performance gap is due to the degradation of binaural and monaural sound localization cues, caused by a combination of device-related and patient-related issues. In this study, we targeted the device-related issues by measuring sound localization performance of 11 NH listeners, listening to free-field stimuli processed by a real-time CI vocoder. The use of a real-time vocoder is a new approach, which enables testing in a free-field environment. For the NH listening condition, all listeners accurately and precisely localized sounds according to a linear stimulus–response relationship with an optimal gain and a minimal bias both in the azimuth and in the elevation directions. In contrast, when listening with bilateral real-time vocoders, listeners tended to orient either to the left or to the right in azimuth and were unable to determine sound source elevation. When listening with an NH ear and a unilateral vocoder, localization was impoverished on the vocoder side but improved toward the NH side. Localization performance was also reflected by systematic variations in reaction times across listening conditions. We conclude that perturbation of interaural temporal cues, reduction of interaural level cues, and removal of spectral pinna cues by the vocoder impairs sound localization. Listeners seem to ignore cues that were made unreliable by the vocoder, leading to acute reweighting of available localization cues. We discuss how current CI processors prevent CI users from localizing sounds in everyday environments.


1946 ◽  
Vol 11 (1) ◽  
pp. 2-2

In the article “Infant Speech Sounds and Intelligence” by Orvis C. Irwin and Han Piao Chen, in the December 1945 issue of the Journal, the paragraph which begins at the bottom of the left hand column on page 295 should have been placed immediately below the first paragraph at the top of the right hand column on page 296. To the authors we express our sincere apologies.


1999 ◽  
Vol 4 (1) ◽  
pp. 6-7
Author(s):  
James J. Mangraviti

Abstract The accurate measurement of hip motion is critical when one rates impairments of this joint, makes an initial diagnosis, assesses progression over time, and evaluates treatment outcome. The hip permits all motions typical of a ball-and-socket joint. The hip sacrifices some motion but gains stability and strength. Figures 52 to 54 in AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, illustrate techniques for measuring hip flexion, loss of extension, abduction, adduction, and external and internal rotation. Figure 53 in the AMA Guides, Fourth Edition, illustrates neutral, abducted, and adducted positions of the hip and proper alignment of the goniometer arms, and Figure 52 illustrates use of a goniometer to measure flexion of the right hip. In terms of impairment rating, hip extension (at least any beyond neutral) is irrelevant, and the AMA Guides contains no figures describing its measurement. Figure 54, Measuring Internal and External Hip Rotation, demonstrates proper positioning and measurement techniques for rotary movements of this joint. The difference between measured and actual hip rotation probably is minimal and is irrelevant for impairment rating. The normal internal rotation varies from 30° to 40°, and the external rotation ranges from 40° to 60°.


2014 ◽  
Vol 35 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Lindsay M. Niccolai ◽  
Thomas Holtgraves

This research examined differences in the perception of emotion words as a function of individual differences in subclinical levels of depression and anxiety. Participants completed measures of depression and anxiety and performed a lexical decision task for words varying in affective valence (but equated for arousal) that were presented briefly to the right or left visual field. Participants with a lower level of depression demonstrated hemispheric asymmetry with a bias toward words presented to the left hemisphere, but participants with a higher level of depression displayed no hemispheric differences. Participants with a lower level of depression also demonstrated a bias toward positive words, a pattern that did not occur for participants with a higher level of depression. A similar pattern occurred for anxiety. Overall, this study demonstrates how variability in levels of depression and anxiety can influence the perception of emotion words, with patterns that are consistent with past research.


2020 ◽  
Vol 6 (2) ◽  
pp. 187-197
Author(s):  
Nurlaila Suci Rahayu Rais ◽  
Dedeh Apriyani ◽  
Gito Gardjito

Monitoring of warehouse inventory data processing is an important thing for companies. PT Talaga mulya indah is still manual using paper media, causing problems that have an effect on existing information, namely: problems with data processing of incoming and outgoing goods. And the difference between data on the amount of stock of goods available with physical data, often occurs inputting data more than once for the same item, searching for available data, and making reports so that it impedes companies in monitoring inventory of existing stock of goods. Which aims to create a system that can provide updated information to facilitate the warehouse admin in making inventory reports, and reduce errors in input by means of integrated control. In this study, the authors used the data collection method used in this analysis using the method of observation, interviews, and literature review (literature study). For analysis using the PIECES analysis method. Furthermore, the system design used is UML (Unified Modeling Language). The results of this study are expected to produce the right data in the process of monitoring inventory data processing, also can provide the right information and make it easier to control the overall availability of goods.


2013 ◽  
Vol 3 (2) ◽  
pp. 438-473
Author(s):  
M. Heri Fadoil

Abstract: Abdul Karim Soroush judges that religious rule is incorrect assessment of the application of Islamic jurisprudence. In a religious society, Islamic jurisprudence obtains the right to govern. It is, of course, necessary to establish a kind of Islamic jurisprudence-based religious rule. Soroush firmly rejects it because such interpretation is too narrow. As for democracy, Soroush argues that the system used is not necessarily equal to that of the Western. On the contrary, Ayatollah Khomeini’s thoughts on religious rule are reflected in the so called wilayat al-faqih. It is a religious scholar-based government. Democracy, according to him, is the values of Islam itself, which is able to represent the level of a system to bring to the country’s progress. Principally, there are some similarities between the ideas of Ayatollah Khomeini and those of Abdul Karim Soroush in term of religiosity. They assume that it is able to sustain the religious system of government. The difference between both lies on the application of religiosity itself. Ayatollah Khomeini applies the concept of a religious scholar-based government, while Abdul Karim Soroush rejects the institutionalization of religion in the government or state.Keywords: Governance, democracy, Abdul Karim Soroush, Ayatollah Khomeini


Author(s):  
Anne Phillips

No one wants to be treated like an object, regarded as an item of property, or put up for sale. Yet many people frame personal autonomy in terms of self-ownership, representing themselves as property owners with the right to do as they wish with their bodies. Others do not use the language of property, but are similarly insistent on the rights of free individuals to decide for themselves whether to engage in commercial transactions for sex, reproduction, or organ sales. Drawing on analyses of rape, surrogacy, and markets in human organs, this book challenges notions of freedom based on ownership of our bodies and argues against the normalization of markets in bodily services and parts. The book explores the risks associated with metaphors of property and the reasons why the commodification of the body remains problematic. The book asks what is wrong with thinking of oneself as the owner of one's body? What is wrong with making our bodies available for rent or sale? What, if anything, is the difference between markets in sex, reproduction, or human body parts, and the other markets we commonly applaud? The book contends that body markets occupy the outer edges of a continuum that is, in some way, a feature of all labor markets. But it also emphasizes that we all have bodies, and considers the implications of this otherwise banal fact for equality. Bodies remind us of shared vulnerability, alerting us to the common experience of living as embodied beings in the same world. Examining the complex issue of body exceptionalism, the book demonstrates that treating the body as property makes human equality harder to comprehend.


Sign in / Sign up

Export Citation Format

Share Document