scholarly journals Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Stefanie Seelk ◽  
Irene Adrian-Kalchhauser ◽  
Balázs Hargitai ◽  
Martina Hajduskova ◽  
Silvia Gutnik ◽  
...  

Cell-fate reprograming is at the heart of development, yet very little is known about the molecular mechanisms promoting or inhibiting reprograming in intact organisms. In the C. elegans germline, reprograming germ cells into somatic cells requires chromatin perturbation. Here, we describe that such reprograming is facilitated by GLP-1/Notch signaling pathway. This is surprising, since this pathway is best known for maintaining undifferentiated germline stem cells/progenitors. Through a combination of genetics, tissue-specific transcriptome analysis, and functional studies of candidate genes, we uncovered a possible explanation for this unexpected role of GLP-1/Notch. We propose that GLP-1/Notch promotes reprograming by activating specific genes, silenced by the Polycomb repressive complex 2 (PRC2), and identify the conserved histone demethylase UTX-1 as a crucial GLP-1/Notch target facilitating reprograming. These findings have wide implications, ranging from development to diseases associated with abnormal Notch signaling.

2014 ◽  
Vol 389 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Jared J. Hale ◽  
Nirav M. Amin ◽  
Carolyn George ◽  
Zachary Via ◽  
Herong Shi ◽  
...  

2021 ◽  
Vol 28 ◽  
Author(s):  
Amir Valizadeh ◽  
Ali Sayadmanesh ◽  
Zatollah Asemi ◽  
Forough Alemi ◽  
Ata Mahmoodpoor ◽  
...  

: The liver is one of the significant regenerative organs in the body. Nevertheless, underlying molecular mechanisms regulating liver repair and regeneration following resection or damage remain largely unknown. The Notch signaling pathway is a profoundly evolutionarily well‐conserved cell signaling system that plays mostly in multicellular organisms' development. Malfunctions in this pathway lead to the progression of several liver disorders, including hepatoblastoma (HB), cholangiocarcinoma (CCA), hepatocellular carcinoma (HCC), and so on. Notch pathway plays a fundamental role in cell fate during the embryonic stage's progression to the adult stage in liver tissue. Modulation of Notch signaling may be used in the vast array of patients who succumb to cirrhosis owing to chronic hepatitis by virus infection. This review describes the underlying mechanisms of the Notch signaling pathway in liver development and regeneration briefly and discusses how this pathway leads to better liver disorders in the clinic.


2016 ◽  
Author(s):  
Ringo Pueschel ◽  
Francesca Coraggio ◽  
Alisha Marti ◽  
Peter Meister

AbstractReprogramming of somatic cells in intact nematodes allows characterization of cell plasticity determinants, which knowledge is crucial for regenerative cell therapies. By inducing muscle or endoderm transdifferentiation by the ectopic expression of selector transcription factors, we show that cell fate is remarkably robust in fully differentiated larvae. This stability depends on the presence of the Polycomb-associated histone H3K27 methylation, but not H3K9 methylation: in the absence of this epigenetic mark, many cells can be transdifferentiated which correlates with definitive developmental arrest. A candidate RNAi screen unexpectedly uncovered that knock-down of somatic NotchLIN-12 signaling rescues this larval arrest. Similarly in a wild-type context, genetically increasing NotchLIN-12 signaling renders a fraction of the animals sensitive to induced transdifferentiation. This reveals an antagonistic role of the Polycomb repressive complex 2 stabilizing cell fate and Notch signaling enhancing cell plasticity.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10334
Author(s):  
Dimitrios Vlachakis ◽  
Louis Papageorgiou ◽  
Ariadne Papadaki ◽  
Maria Georga ◽  
Sofia Kossida ◽  
...  

Notch family proteins play a key role in a variety of developmental processes by controlling cell fate decisions and operating in a great number of biological processes in several organ systems, such as hematopoiesis, somatogenesis, vasculogenesis, neurogenesis and homeostasis. The Notch signaling pathway is crucial for the majority of developmental programs and regulates multiple pathogenic processes. Notch family receptors’ activation has been largely related to its multiple effects in sustaining oncogenesis. The Notch signaling pathway constitutes an ancient and conserved mechanism for cell to cell communication. Much of what is known about Notch family proteins function comes from studies done in Caenorhabditis Elegans and Drosophila Melanogaster. Although, human Notch homologs had also been identified, the molecular mechanisms which modulate the Notch signaling pathway remained substantially unknown. In this study, an updated evolutionary analysis of the Notch family members among 603 different organisms of all kingdoms, from bacteria to humans, was performed in order to discover key regions that have been conserved throughout evolution and play a major role in the Notch signaling pathway. The major goal of this study is the presentation of a novel updated phylogenetic tree for the Notch family as a reliable phylogeny “map”, in order to correlate information of the closely related members and identify new possible pharmacological targets that can be used in pathogenic cases, including cancer.


2015 ◽  
Vol 36 (5) ◽  
pp. 1991-2002 ◽  
Author(s):  
Bao-quan Song ◽  
Ying Chi ◽  
Xue Li ◽  
Wen-jing Du ◽  
Zhi-Bo Han ◽  
...  

Background: The Notch signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. This study was designed to determine the role of Notch signaling in adipogenic differentiation of human bone marrow derived MSCs (BM-MSCs). Methods: The Notch signaling was inhibited by the γ-secretase inhibitor N-[N-(3,5-difluor- ophenacetyl-L-alanyl)]-S-phenylglycine t-butylester (DAPT). The markers involving adipogenic differentiation of MSCs, the relative pathway PTEN-PI3K/Akt/mTOR and autophagy activation were then analyzed. Furthermore, the autophagy inhibitor chloroquine (CQ) and 3-methyladenine (3-MA) were used to study the role of autophagy in the DAPT-induced the adipogenic differentiation of MSCs. Results: We first confirmed the down -regulation of Notch gene expression during MSCs adipocyte differentiation, and showed that the inhibition of Notch signaling significantly enhanced adipogenic differentiation of MSCs. Furthermore, Notch inhibitor DAPT induced early autophagy by acting on PTEN-PI3K/Akt/mTOR pathway. The autophagy inhibitor CQ and 3-MA dramatically abolished the effects of DAPT-induced autophagy and adipogenic differentiation of MSCs. Conclusion: Our results indicate that inhibition of Notch signaling could promote MSCs adipogenesis mediated by autophagy involving PTEN-PI3K/Akt/mTOR pathway. Notch signaling could be a novel target for regulating the adipogenic differentiation of MSCs.


Reproduction ◽  
2006 ◽  
Vol 132 (6) ◽  
pp. 887-897 ◽  
Author(s):  
Serena Corallini ◽  
Stefania Fera ◽  
Laura Grisanti ◽  
Ilaria Falciatori ◽  
Barbara Muciaccia ◽  
...  

Numb is an adaptor protein that is asymmetrically inherited at mitosis and controls the fate of sibling cells in different species. The role of m-Numb (mammalian Numb) as an important cell fate-determining factor has extensively been described mostly in neural tissues, particularly in progenitor cells, in the mouse. Biochemical and genetic analyses have shown that Numb acts as an inhibitor of the Notch signaling pathway, an evolutionarily conserved pathway involved in the control of cell proliferation, differentiation, and apoptosis. In the present study, we sought to determine m-Numb distribution in germ cells in the postnatal mouse testis. We show that all four m-Numb isoforms are widely expressed during postnatal testis development. By reverse transcriptase-PCR and western blot analyses, we further identify p71 as the predominantly expressed isoform in germ cells. Moreover, we demonstrate through co-immunoprecipitation studies that m-Numb physically associates with Ap2a1, a component of the endocytotic clathrin-coated vesicles. Finally, we employed confocal immunofluorescence microscopy of whole mount seminiferous tubules and isolated germ cells to gain more insight into the subcellular localization of m-Numb. These morphological analyses confirmed m-Numb and Ap2a1 co-localization. However, we did not observe asymmetric localization of m-Numb neither in mitotic spermatogonial stem cells nor in more differentiated spermatogonial cells, suggesting that spermatogonial stem cell fate in the mouse does not rely on asymmetric partitioning of m-Numb.


2020 ◽  
Vol 21 (22) ◽  
pp. 8847
Author(s):  
Rossella Gratton ◽  
Paola Maura Tricarico ◽  
Adamo Pio d'Adamo ◽  
Anna Monica Bianco ◽  
Ronald Moura ◽  
...  

Notch pathway is a highly conserved intracellular signaling route that modulates a vast variety of cellular processes including proliferation, differentiation, migration, cell fate and death. Recently, the presence of a strict crosstalk between Notch signaling and inflammation has been described, although the precise molecular mechanisms underlying this interplay have not yet been fully unravelled. Disruptions in Notch cascade, due both to direct mutations and/or to an altered regulation in the core components of Notch signaling, might lead to hypo- or hyperactivation of Notch target genes and signaling molecules, ultimately contributing to the onset of autoinflammatory diseases. To date, alterations in Notch signaling have been reported as associated with three autoinflammatory disorders, therefore, suggesting a possible role of Notch in the pathogenesis of the following diseases: hidradenitis suppurativa (HS), Behçet disease (BD), and giant cell arteritis (GCA). In this review, we aim at better characterizing the interplay between Notch and autoinflammatory diseases, trying to identify the role of this signaling route in the context of these disorders.


2020 ◽  
Vol 8 (4) ◽  
pp. 24 ◽  
Author(s):  
Nida ul Fatima ◽  
Baris Tursun

The potential of a cell to produce all types of differentiated cells in an organism is termed totipotency. Totipotency is an essential property of germ cells, which constitute the germline and pass on the parental genetic material to the progeny. The potential of germ cells to give rise to a whole organism has been the subject of intense research for decades and remains important in order to better understand the molecular mechanisms underlying totipotency. A better understanding of the principles of totipotency in germ cells could also help to generate this potential in somatic cell lineages. Strategies such as transcription factor-mediated reprogramming of differentiated cells to stem cell-like states could benefit from this knowledge. Ensuring pluripotency or even totipotency of reprogrammed stem cells are critical improvements for future regenerative medicine applications. The C. elegans germline provides a unique possibility to study molecular mechanisms that maintain totipotency and the germ cell fate with its unique property of giving rise to meiotic cells Studies that focused on these aspects led to the identification of prominent chromatin-repressing factors such as the C. elegans members of the Polycomb Repressive Complex 2 (PRC2). In this review, we summarize different factors that were recently identified, which use molecular mechanisms such as control of protein translation or chromatin repression to ensure maintenance of totipotency and the germline fate. Additionally, we focus on recently identified factors involved in preventing transcription-factor-mediated conversion of germ cells to somatic lineages. These so-called reprogramming barriers have been shown in some instances to be conserved with regard to their function as a cell fate safeguarding factor in mammals. Overall, continued studies assessing the different aspects of molecular pathways involved in maintaining the germ cell fate in C. elegans may provide more insight into cell fate safeguarding mechanisms also in other species.


2020 ◽  
Vol 133 (24) ◽  
pp. jcs250738
Author(s):  
Oscar M. J. A. Stassen ◽  
Tommaso Ristori ◽  
Cecilia M. Sahlgren

ABSTRACTTissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a ‘mechanostat’, maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Iris Marchal ◽  
Baris Tursun

Cell fate conversion by the forced overexpression of transcription factors (TFs) is a process known as reprogramming. It leads to de-differentiation or trans-differentiation of mature cells, which could then be used for regenerative medicine applications to replenish patients suffering from, e.g., neurodegenerative diseases, with healthy neurons. However, TF-induced reprogramming is often restricted due to cell fate safeguarding mechanisms, which require a better understanding to increase reprogramming efficiency and achieve higher fidelity. The germline of the nematode Caenorhabditis elegans has been a powerful model to investigate the impediments of generating neurons from germ cells by reprogramming. A number of conserved factors have been identified that act as a barrier for TF-induced direct reprogramming of germ cells to neurons. In this review, we will first summarize our current knowledge regarding cell fate safeguarding mechanisms in the germline. Then, we will focus on the molecular mechanisms underlying neuronal induction from germ cells upon TF-mediated reprogramming. We will shortly discuss the specific characteristics that might make germ cells especially fit to change cellular fate and become neurons. For future perspectives, we will look at the potential of C. elegans research in advancing our knowledge of the mechanisms that regulate cellular identity, and what implications this has for therapeutic approaches such as regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document