scholarly journals Effect of Zn-Rich Wheat Bran With Different Particle Sizes on the Quality of Steamed Bread

2021 ◽  
Vol 8 ◽  
Author(s):  
Huinan Wang ◽  
Anfei Li ◽  
Lingrang Kong ◽  
Xiaocun Zhang

Bran is the main by-product of wheat milling and the part of the grain with the highest Zn content. We investigated the effects of the particle sizes (coarse, D50 = 375.4 ± 12.3 μm; medium, D50 = 122.3 ± 7.1 μm; and fine, D50 = 60.5 ± 4.2 μm) and addition level (5–20%) of Zn-biofortified bran on the quality of flour and Chinese steamed bread. It was studied to determine if the Zn content of steamed bread could be enhanced without deleterious effects on quality. Dough pasting properties, such as peak viscosity, trough viscosity, final viscosity, breakdown, and setback, decreased significantly as the bran addition level was increased from 5 to 20% but did not significantly differ as a result of different bran particle sizes. Bran incorporation significantly increased hardness, gumminess, chewiness, and adhesiveness, whereas the springiness, cohesiveness, and specific volume of steamed bread decreased with the increase in bran addition. The optimal sensory score of steamed bread samples in the control and Zn fertilizer groups were obtained under 5% bran addition resulting in comparable flavor, and texture relative to control. Meanwhile, the Zn content of the steamed bread in the Zn fertilizer group was 40.2 mg/kg, which was 55.8% higher than that in the control group. Results indicated that adding the appropriate particle size and amount of bran would be an effective and practical way to solve the problem of the insufficient Zn content of steamed bread.

2011 ◽  
Vol 53 (2) ◽  
pp. 217-224 ◽  
Author(s):  
J.S. Chen ◽  
M.J. Fei ◽  
C.L. Shi ◽  
J.C. Tian ◽  
C.L. Sun ◽  
...  

Author(s):  
M. A. Taymarov ◽  
R. V. Akhmetova ◽  
S. M. Margulis ◽  
L. I. Kasimova

The difficulties of burning the watered fuel oil used at the TPP as a reserve fuel for boilers are associated with its preparation by heating to reduce viscosity and the choice of a method of spraying with nozzles into the combustion zone. The quality of the preparation of fuel oil for combustion affecting the boiler efficiency is estimated by the length of the flame, the presence of burning large particles of fuel oil, the injection of coke and unburned particles onto screen and other heat-receiving surfaces. One of the ways to prepare fuel oil for combustion is cavitation treatment, which results in an emulsion consisting of fine micronsized particles. Heating of fuel oil particles after the nozzle in contact with the combustion zone is due to the flow of radiation from the burning torch. Therefore, in this article, the values of the flux density from the torch during the combustion of fuel oil are experimentally determined. The influence of particle size on the burning rate of the fuel oil M100 with the different density of the thermal radiation of the flame. It is found that the effect of cavitation treatment of fuel oil on the combustion rate is most significantly manifested in particle sizes less than 10 microns. For this purpose, the use of hydrodynamic cavitators are preferred at high fuel oil consumption rate.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Alfonsus Rodriquez ◽  
Ahmad Yani ◽  
Fathul Yusro

This study aims to analyze the quality of composite boards from plywood veneers waste and polypropylene plastic waste adhesives base on particle sizes, pressing times, and both of interaction towards physical and mechanical properties also to obtain the particle sizes and pressing time properly with the result that produce the qualified standard boards of JIS A 5908-2003. This research carried out at the wood workshop, laboratory of technology and processing of woods (the faculty of forestry, university of Tanjungpura), and the laboratory of PT. Duta Pertiwi Nusantara. The materials used in this study were plywood veneers waste and polypropylene plastic by 50% : 50% comparison. The research method was utilized the completely randomized factorial design by two treatment factors. Factor A was particle sizes that consisting of 6 mesh, 8 mesh, and 10 mesh. Factor B was pressing time that consisting of 10 minutes, 15 minute, and 20 minutes. Composite boards were created by 30 x 30 x 1 size in centimetres by means the density target was 0,7 gr/cm3. The pressing was done by hot press in 180oC temperature and composite boards conditioning for 14 days. The results of this study showed that the density, water absorption, thickness, Modulus of Repture (MOR), internal bonding, holding strength of screws in the composite boards have been qualified the standard of JIS A 5908-2003. While, the water contents and Modulus of Elasticity (MOE) testing were not qualified the standard of JIS 5908-2003. The treatment that produce the optimum composite boards which quality JIS A 5908-2003 standard was on the 8 mesh particle size treatment by means of 15 minutes pressing time.Keywords: Composite Board, Particle Size, Polypropylene Plastics, Pressing Time, Veneers Waste.


Eksergi ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 29
Author(s):  
Tutik Muji Setyoningrum ◽  
Wibiana Wulan Nandari ◽  
Sri Wahyu Murni ◽  
Muhamad Maulana Azimatun Nur

Silica is mainly used in the production of rubber, glass, cement, glass, ceramics, paper, cosmetics, electronics, paintings, healthcare and other industries. Kalirejo village has a potential abundant resource of silica minerals. However, to refine it, high cost of extraction should be done to obtain high purity of silica. Different refining methods influence different purity of the silica. The purpose of this research was to study the refining process of mineral rock silica from Kalirejo village, Kokap, Kulonprogo by emplying simple and cheap solid-liquid extraction. Extraction was done by varying the particle size at 100 - 200 mesh, while NaOH concentration was varied in 0.5 N to 5 N.  Results showed that minerals taken from Kalirejo village was dominated by silica (23%).  The largest extract (4.89 gram) was obtained at 200 mesh and using NaOH 5 N with yield of 15.07%. Higher NaOH and higher particle size enhanced the extraction yield. This finding could help small communities in Kalirejo village to enhance the quality of silica by employing simple and cheap extraction process.


Author(s):  
Ramesh Nadiger ◽  
Bhupender Yadav ◽  
Puja Malhotra ◽  
Harish Yadav

ABSTRACT The present study was carried out to evaluate and compare the effect of air abrasion on marginal accuracy of titanium crowns after casting. A total of 90 samples were prepared which were divided in three groups of 30 specimens each of shoulder, chamfer and shoulder with bevel marginal configurations respectively. Thirty samples were air abraded using 120 μm particle size of aluminum oxide particle and remaining 30 specimens by 250 μm particle sizes respectively. The length from the reference line and tip of the cast specimens before and after sand blasting was measured with the help of traveling microscope. Same specimens were subjected to trimming for removal of alpha case layer for a standardized time, speed and pressure. The basic data of marginal discrepancy due to sand blasting and alpha case removal for each marginal configuration were evaluated and compared with data for the control group using student ‘t’ test and ANOVA. The smaller the margin angle, the greater was the loss of alloy after air abrasion (shoulder with bevel > chamfer > shoulder). Particle size of the abrasive also influenced the vertical marginal loss, as the particle size increased from 120 to 250 μm, marginal loss also increased. Finishing of casting margins after sandblasting also induced vertical marginal loss. How to cite this article Yadav B, Malhotra P, Nadiger R, Yadav H. Effect of Air Abrasion on the Marginal Configuration of Titanium Crowns after Casting. Int J Prosthodont Restor Dent 2013;3(4):131-135.


2018 ◽  
Vol 789 ◽  
pp. 26-30
Author(s):  
Dan Shi Zhu ◽  
Li Wei Wei ◽  
Xiao Jun Ren ◽  
Xue Hui Cao ◽  
He Liu ◽  
...  

Acidity is an important influence factor for juice stability. In this study, the effects of acidityon stability of cloudy apple juice were investigated. The stability indexes, such as, turbidity, cloudvalue, cloud stability, and particle size distribution (PSD) were measured at pH 2.0, 2.5, 3.0 and 3.5,along with the untreated juice (pH 3.8) as control group. The results showed that, pH has significanteffects on turbidity, chrome (C*), cloud value, and D50, D90 in PSD of cloudy apple juice. The juicehad a better stabilization at pH 2.5. At this pH condition, the turbidity, cloud value, cloud stability ofjuice was the best. In addition, at pH 2.5, the color of the juice was better, the particles were smaller,and the particle sizes were more uniform. By this study, a theoretical reference could be provided forimproving stability of cloudy apple juice and extending juice shelf life.


2020 ◽  
Vol 10 (22) ◽  
pp. 8165
Author(s):  
Marta Pędzik ◽  
Kinga Stuper-Szablewska ◽  
Maciej Sydor ◽  
Tomasz Rogoziński

Wood dust poses a threat to the health of employees and the risk of explosion and fire, accelerates the wear of machines, worsens the quality of processing, and requires large financial outlays for its removal. The aim of this study was to investigate the extent to which the grit size of sandpaper influences the size of the wood dust particles and the proportion of the finest particles which, when dispersed in the air, may constitute the respirable fraction. Six species of hardwood (beech, oak, ash, hornbeam, alder, and walnut), and three species of softwood (larch, pine, and spruce) were used in the research. While sanding the samples under the established laboratory conditions, the following were measured for two types of sandpapers (grit sizes P60 and P180): mean arithmetic particle size of dust and finest dust particles content (<10 µm). Based on the obtained results, we found that the largest dust particle sizes were obtained for alder, pine, and spruce; the smallest size of dust particles during sanding with both sandpapers was obtained for beech, hornbeam, oak, ash, larch, and walnut. The mean arithmetic particle sizes ranged from 327.98 µm for pine to 104.23 µm for hornbeam. The mean particle size of the dust obtained with P60 granulation paper was 1.4 times larger than that of the dust obtained with P180 granulation sandpaper. The content of the finest dust particles ranged from 0.21% for pine (P60 sandpaper) to 12.58% for beech (P180 sandpaper).The type of wood (hardwood or softwood) has a significant influence on the particle size and the content of the finest dust fraction.


1999 ◽  
Vol 79 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Nsalambi V. Nkongolo ◽  
Jean Caron

The physical quality of peat mixes is in part related to the capacity of the substrate to store and supply air and water to plant roots. During manufacturing, the mixing of various substrate components modifies the substrate characteristics. The objective of this study was to assess the changes in air storage and supply properties caused by varying the particle size of the substrate components. The substrate was composed of 40% wood bark (WB), 50% peat, and 10% coarse gravel (volume basis). Wood bark particle size was varied in a first (0–2, 2–4, 4–8 and 8–25 mm) and a second (1–2, 2–4, 4–8 and 8–16 mm) experiment. When increasing bark particle sizes to 8–25 mm or 8–16 mm, air supply characteristics, as assessed with gas diffusivity measurements, decreased to 0.78 or 0.45 its value for the 2–4 or 1–2 mm average bark particle size. This occurred despite no significant changes in air storage, as assessed from air-filled porosity measurements. Key words: Gas diffusivity, pore tortuosity, air-filled porosity, peat lite mixes, peat substrates


Author(s):  
Kuldeep Mandloi ◽  
Parth Amrapurkar ◽  
Harish P. Cherukuri

Abstract In selective laser melting (SLM) and selective laser sintering (SLS) additive manufacturing techniques, the powder spreading process plays a key role in the quality of the manufactured parts. Some of the important parameters that influence the quality of the powder bed are the powder particle size distribution, spreader-type (roller or blade), spreader speed, size and shape of the particles. In this work, we use the discrete element method to study the effect of these parameters on the quality of the powder bed. The interactions between the particles is modeled using Hertz-Mindlin contact model as well as Hertz-Mindlin with JKR contact model with the latter being used for studies of the effect of cohesiveness of particles on powder bed quality. The Dynamic Repose Angle (DRA) is used for validating the numerical models. Our studies differ from the previous studies in that we have introduced quantitative measures for powder bed quality in the form of Discretized Volume Fraction (DVF) and Particle Flow Rate (PFR) for the layering process. With the help of these quantities, we studied various factors that affect powder bed quality: cohesiveness of the particles, spreader shape, particle size and shape, and the distribution of particle sizes. Our results indicate that as DVF and PFR decrease and DRA increases, the potential for cavities and shifting defects increases due to increase in cohesiveness. Use of fixed particle size in the simulations leads to higher DRA than when a normal distribution of particle sizes is considered. Our results show that the roller geometry provides better bed quality as compared to the blade type geometry.


2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2091779
Author(s):  
Konosuke Matsuzaki ◽  
Katsuki Iwai ◽  
Yuko Yoshikawa ◽  
Yuko Shimamura ◽  
Noriyuki Miyoshi ◽  
...  

Wheat bran, a by-product generated in large amounts during wheat processing, consists of 36.5% to 52.4% total dietary fiber. In this study, we investigated the effects of wheat bran intake on the intestinal tract immune system through the modulation of gut microbiota. Balb/c mice were fed with AIN-93G diets containing wheat bran with 2 different particle sizes (average particle size of 53 µm: powdered wheat bran; PWB, and 350 µm: granulated wheat bran; WB) as dietary fibers for 4 weeks. In the wheat bran intake groups, short chain fatty acids (SCFAs: acetic acid, propionic acid, and butyric acid) in the feces were increased after the intake of both particle-size diets, especially in the PWB group, in which the increase occurred immediately. 16S rRNA-based metagenomics of the fecal microbiota revealed that the Shannon Index (α-diversity) and weighted UniFrac distances (β-diversity) in wheat bran intake groups were significantly higher than those in the Control group, and the ratio of the certain family within the order Clostridiales in the fecal microbiota was increased after wheat bran intake, probably some including SCFA-producing bacteria. CXCR5, which is a key surface marker expressed on T follicular helper (Tfh) cells, tended to increase at the expression level in wheat bran intake groups. In addition, the amounts of secretory immunoglobulin A (IgA) and the proportion of IgA-binding bacteria in the feces from wheat bran intake groups were significantly higher than those from the Control group. These findings suggest that wheat bran may enhance Tfh-mediated IgA production in the intestine by SCFA increment through the modulation of gut microbiota and is expected to maintain and improve a healthy intestinal environment.


Sign in / Sign up

Export Citation Format

Share Document