scholarly journals Astaxanthin Treatment Induces Maturation and Functional Change of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice

Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 350
Author(s):  
Seong Mun Jeong ◽  
Yeon-Jeong Kim

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells which accumulate in stress conditions such as infection and tumor. Astaxanthin (ATX) is a well-known antioxidant agent and has a little toxicity. It has been reported that ATX treatment induces antitumor effects via regulation of cell signaling pathways, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling. In the present study, we hypothesized that treatment with ATX might induce maturation of MDSCs and modulate their immunosuppressive activity. Both in vivo and in vitro treatment with ATX resulted in up-regulation of surface markers such as CD80, MHC class II, and CD11c on both polymorphonuclear (PMN)-MDSCs and mononuclear (Mo)-MDSCs. Expression levels of functional mediators involved in immune suppression were significantly reduced, whereas mRNA levels of Nrf2 target genes were increased in ATX-treated MDSCs. In addition, ATX was found to have antioxidant activity reducing reactive oxygen species level in MDSCs. Finally, ATX-treated MDSCs were immunogenic enough to induce cytotoxic T lymphocyte response and contributed to the inhibition of tumor growth. This demonstrates the role of ATX as a regulator of the immunosuppressive tumor environment through induction of differentiation and functional conversion of MDSCs.

2020 ◽  
Vol 8 (1) ◽  
pp. e000478 ◽  
Author(s):  
Thomas Pilot ◽  
Aurélie Fratti ◽  
Chloé Thinselin ◽  
Anaïs Perrichet ◽  
Lucie Demontoux ◽  
...  

BackgroundWe have previously shown that 5-fluorouracil (5-FU) selectively kills myeloid-derived suppressor cells (MDSCs) and activates NLRP3 (NOD-leucine rich repeat and pyrin containing protein 3) inflammasome. NLRP3 activation leads to caspase-1 activation and production of IL-1β, which in turn favors secondary tumor growth. We decided to explore the effects of either a heat shock (HS) or the deficiency in heat shock protein (HSP) 70, previously shown to respectively inhibit or increase NLRP3 inflammasome activation in macrophages.MethodsCaspase-1 activation was detected in vitro in MSC-2 cells by western blot and in vivo or ex vivo in tumor and/or splenic MDSCs by flow cytometry. The effects of HS, HSP70 deficiency and anakinra (an IL-1 inhibitor) on tumor growth and mice survival were studied in C57BL/6 WT orHsp70−/−tumor-bearing mice. Finally, Th17 polarization was evaluated by qPCR (Il17a, Rorc) and angiogenic markers by qPCR (Pecam1, Eng) and immunohistochemistry (ERG).ResultsHS inhibits 5-FU-mediated caspase-1 activation in vitro and in vivo without affecting its cytotoxicity on MDSCs. Moreover, it enhances the antitumor effect of 5-FU treatment and favors mice survival. Interestingly, it is associated to a decreased Th17 and angiogenesis markers in tumors. IL-1β injection is able to bypass HS+5-FU antitumor effects. In contrast, inHsp70−/−MDSCs, 5-FU-mediated caspase-1 activation is increased in vivo and in vitro without effect on 5-FU cytotoxicity. InHsp70−/−mice, the antitumor effect of 5-FU was impeded, with an increased Th17 and angiogenesis markers in tumors. Finally, the effects of 5-FU on tumor growth can be restored by inhibiting IL-1β, using anakinra.ConclusionThis study provides evidence on the role of HSP70 in tuning 5-FU antitumor effect and suggests that HS can be used to improve 5-FU anticancer effect.


2020 ◽  
Vol 40 (15) ◽  
Author(s):  
Dingyang Li ◽  
Zhe Tang ◽  
Zhiqiang Gao ◽  
Pengcheng Shen ◽  
Zhaochen Liu ◽  
...  

ABSTRACT It has been found that the circular RNA (circRNA) CDR1as is upregulated in cholangiocarcinoma (CCA) tissues. In this study, we tried to explore the roles of CDR1as in CCA. CDR1as was overexpressed or knocked down in human CCA cells to assess the effects of CDR1as on cell behaviors and tumor xenograft growth. In vitro, the CDR1as level was significantly increased in CCA cell lines. The results showed that CDR1as promoted the cell proliferation, migration, invasion, and activation of the AKT3/mTOR pathway in CCA cells. Moreover, miR-641, a predicted target microRNA (miRNA) of CDR1as, could partially reverse the effects of CDR1as on cell behaviors in CCA cells. Furthermore, CDR1as improved tumor xenograft growth, and it could be attenuated by miR-641 in vivo. Additionally, CDR1as expression was inversely correlated with miR-641 in CCA cells, and miR-641 could directly bind with CDR1as and its target genes, the AKT3 and mTOR genes. Mechanistically, CDR1as could bind with miR-641 and accelerate miR-641 degradation, which possibly leads to the upregulation of the relative mRNA levels of AKT3 and mTOR in RBE cells. In conclusion, our findings indicated that CDR1as might exert oncogenic properties, at least partially, by regulating miR-641 in CCA. CDR1as and miR-641 could be considered therapeutic targets for CCA.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0183271 ◽  
Author(s):  
Kuo-Ti Peng ◽  
Ching-Chuan Hsieh ◽  
Tsung-Yu Huang ◽  
Pei-Chun Chen ◽  
Hsin-Nung Shih ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Eric Chang-Yi Lin ◽  
Shuoh-Wen Chen ◽  
Luen-Kui Chen ◽  
Ting-An Lin ◽  
Yu-Xuan Wu ◽  
...  

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuko Kusakabe ◽  
Tetsuhiro Chiba ◽  
Motohiko Oshima ◽  
Shuhei Koide ◽  
Ola Rizq ◽  
...  

AbstractBoth EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi125-vi125
Author(s):  
Tyler Alban ◽  
Defne Bayik ◽  
Balint Otvos ◽  
Matthew Grabowski ◽  
Manmeet Ahluwalia ◽  
...  

Abstract The immunosuppressive microenvironment in glioblastoma (GBM) enables persistent tumor growth and evasion from tumoricidal immune cell recognition. Despite a large accumulation of immune cells in the GBM microenvironment, tumor growth continues, and evidence for potent immunosuppression via myeloid derived suppressor cells (MDSCs) is now emerging. In agreement with these observations, we have recently established that increased MDSCs over time correlates with poor prognosis in GBM, making these cells of interest for therapeutic targeting. In seeking to reduce MDSCs in GBM, we previously identified the cytokine macrophage migration inhibitory factor (MIF) as a possible activator of MDSC function in GBM. Here, using a novel in vitro co-culture system to reproducibly and rapidly create GBM-educated MDSCs, we observed that MIF was essential in the generation of MDSCs and that MDSCs generated via this approach express a repertoire of MIF receptors. CD74 was the primary MIF receptor in monocytic MDSCs (M-MDSC), which penetrate the tumor microenvironment in preclinical models and patient samples. A screen of MIF/CD74 interaction inhibitors revealed that MN-166, a clinically relevant blood brain barrier penetrant drug, which is currently fast tracked for FDA approval, reduced MDSC generation and function in vitro. This effect was specific to M-MDSC subsets expressing CD74, and appeared as reduced downstream pERK signaling and MCP-1 secretion. In vivo, MN-166 was able reduce tumor-infiltrating MDSCs, while conferring a significant increase in survival in the syngeneic glioma model GL261. These data provide proof of concept that M-MDSCs can be targeted in the tumor microenvironment via MN-166 to reduce tumor growth and provide a rationale for future clinical assessment of MN-166 to reduce M-MDSCs in the tumor microenvironment. Ongoing studies are assessing the effects of MDSC inhibition in combination with immune activating approaches, in order to inhibit immune suppression while simultaneously activating the immune system.


2011 ◽  
Vol 29 (4_suppl) ◽  
pp. 194-194
Author(s):  
M. R. Porembka ◽  
J. B. Mitchem ◽  
P. S. Goedegebuure ◽  
D. Linehan

194 Background: Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immunosuppressive cells that are upregulated in cancer. Little is known about the prevalence and importance of MDSC in pancreas adenocarcinoma (PA). Here, we quantify MDSC prevalence in patients with PA and assess the efficacy of MDSC depletion in a murine model of PA. Methods: Peripheral blood and tumor samples were collected from patients with PA, analyzed for MDSC (CD15+11b+) by flow cytometry (FC) and compared to cancer-free controls (CFC). The suppressive capacity of MDSC and the effectiveness of MDSC depletion were assessed in C57BL/6 mice inoculated with Pan02, a murine PA, and treated with placebo or zoledronic acid (ZA), a potent aminobisphosphonate previously shown to target MDSC. Endpoints included tumor size, survival, and MDSC prevalence. Tumor cell infiltrate was analyzed by FC for MDSC (Gr1+CD11b+) and effector T cells; tumor cytokine levels were measured by Luminex assay. Results: Patients with PA demonstrated increased circulating MDSC compared to CFC, which correlated with disease stage (metastatic PA: 68%±3.6% of CD45+ cells, resectable PA: 57%±3.5%, CFC: 37%±3.6%; p<0.0001). Normal pancreas tissue showed no MDSC infiltrate while PA avidly recruited CD11b+15+ cells to the primary tumor. Murine tumors similarly recruited MDSC that actively suppressed CD8+ T cells in vitro measured by CFSE dilution and accelerated tumor growth in vivo by adoptive transfer with Pan02 cells (p<0.001). Treatment with ZA impaired MDSC accumulation in the tumor (Placebo: 78%, ZA: 51%, p<0.05) resulting in delayed tumor growth rate (p<0.0001) and prolonged median survival (Placebo: 59 days, ZA: 73 days, p<0.05). MDSC blockade increased recruitment of T cells to the tumor (CD4: 4.4%±1.1% vs 12.2%±2.0%, p<0.05; CD8: 3.9%±1.3% vs 10.6%±2.2%, p<0.05) and a more robust type 1 response with increased levels of IFN-g (p<0.05) and decreased levels of IL-10 (p<0.05). Conclusions: MDSC are an important mediator of tumor-induced immunosuppression in PA. Treatment with ZA effectively blocks MDSC accumulation improving anti-tumor response in animal studies. Efforts to block MDSC may represent a novel treatment strategy for PA. [Table: see text]


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 792-792
Author(s):  
Alice Mui ◽  
Mike Kennah ◽  
Christopher Ong ◽  
Raymond Anderson ◽  
Heather Sutherland

Abstract Abstract 792 We recently described a novel anti-MM drug (AQX-MN100) which is a small molecule agonist of SHIP (Src homology-2 (SH2) containing inositol-5¢-phosphatase) a signaling molecule found only in hemopoietic cells.(Ong et al, Blood; 110:1942, 2007) The molecule was developed using a high-throughput SHIP enzyme assay to screen an invertebrate marine natural product library and isolate the Pelorol.(Yang et al Org Lett; 7:1073, 2005) SHIP normally functions to negatively regulate the PI3K pathway important to normal hemopoietic cells growth and function. Inappropriate activation of the phosphoinositide 3- kinase (PI3K) pathway has been shown to be involved in the pathogenesis of MM and tumour aggressiveness correlates with the degree of activation. The critical role the PI3K/Akt signaling pathway plays in regulating MM cell survival, has stimulated efforts in designing therapeutics that target this pathway. Pan PI3K inhibitors have limited utility in a clinical setting because of their inhibitory effects on all isoforms of the PI3K family as well as non-PI3K targets. SHIP is an exceptionally good target for MM and other hematopoietic disorders that display elevated PI3K/Akt signaling because its expression is restricted to hemopoietic cells. We have shown that an analogue of Pelorol, AQX-MN100 is able to inhibit PI3K signaling and prevent phosphorylation of Akt. AQX-MN100 induced MM cell line apoptosis mediated by caspase and was specific for SHIP expressing cells which are exclusively hematopoietic. AQX-MN100 also enhances the growth inhibition effects of current myeloma drugs Dexamethasone and Bortezomib on human MM tumour cell lines in vitro. (Kennah et al Expt Hematol; 37:1274, 2009) In this study we have extended these finding to further evaluate the role of this compound in the treatment of myeloma. NOD-SCID mice were injected in the lateral flanks with 2 million luciferase tagged MM1.S multiple myeloma cells in Matrigel. Tumors were allowed to establish for two weeks and then either AQX-MN100 or vehicle was administered in an oil deposit subcutaneously in the lower flank at a dose of 50 mg/kg every three days. Tumor volume was quantified by imaging on a Xenogen IVIS 200 after 6 and 11 days. These studies demonstrate a significant reduction of tumor volume at 6 days p<0.05 and a highly significant reduction at 11 days p<0.01 in the mice receiving AQX-MN100 as compared to vehicle. We have shown that AQX-MN100 can directly kill MM cells in in vitro and in vivo. However, based on the known functions of SHIP, we predict that SHIP agonists will additionally target critical steps in MM pathogenesis in vivo, including the ability of MM cells to interact with stromal elements and to subvert the immune system. In order to evaluate this later feature we evaluated the ability of SHIP agonists to reverse the tumor associated immune suppression in MM patients. Tumor and host cell/tumor microenvironment secreted factors promote the production and activation of cells associated with cancer progression: the immune suppressive myeloid derived suppressor cells (MDSC) and regulatory T cells (Tregs). These cells normally regulate immune responses by inhibiting the activation of immune effector cells. The involvement of SHIP in the regulation of these cells is predicted by the observation that MDSC and Treg numbers are elevated in SHIP deficient mice. In this study Balb/C mice, 6 mice/group in duplicate were given either AQX-MN100 3 mg/kg and 10 mg/kg or vehicle once daily orally. At the end of three weeks mesenteric lymph nodes were harvested and subjected to FACS analysis to determine the proportion of MDSC (CD11b+Gr1+) and Treg (CD4+CD25+FoxP3+) cells. Spleen cells were also analysed for B cells, NK cells and granulocytes. In both of the AQX-MN100 treated groups the numbers of MDSC and Tregs were significantly lower than controls while Total CD11b, Total CD3, and spleen B, NK and granulocytes were not different from vehicle treated controls. The known role of SHIP in regulating hemopoietic cell function and the role of SHIP agonists in MM cell killing as well as additional actions on other aspects of MM pathophysiology may make them a powerful treatment option for MM, either alone or in synergy with other known MM therapies. Further development of this agent for the treatment of MM is ongoing. Disclosures: Mui: Aquinox: Equity Ownership, Patents & Royalties. Ong:Aquinox: Equity Ownership, Patents & Royalties. Anderson:Aquinox: Equity Ownership, Patents & Royalties. Sutherland:Celgene: Honoraria; Orthobiotech: Honoraria.


2020 ◽  
Vol 8 (1) ◽  
pp. e000339 ◽  
Author(s):  
Hongliang Dong ◽  
Yueyao Yang ◽  
Chenhui Gao ◽  
Hehe Sun ◽  
Hongmin Wang ◽  
...  

BackgroundTumor-associated macrophages (TAMs) resemble M2-polarized cells with potent immunosuppressive activity and play a pivotal role in tumor growth and progression. Converting TAMs to proinflammatory M1-like phenotype is thus an attractive strategy for antitumor immunotherapy.MethodsA mouse IgG1(kappa) monoclonal Ab, M-860, specific to human lactoferrin (LTF) was generated by using the traditional hybridoma cell fusion technology. TAMs were generated by culturing human and mouse CD14+monocytes in tumor-conditioned media containing a cytokine cocktail containing recombinant interleukin-4 (IL-4), interleukin-10 (IL-10) and macrophage colony stimulating factor (M-CSF). TAMs after treatment with immunocomplex (IC) between human LTF and M860 (LTF-IC) were phenotypically and functionally characterized by flow cytometry (FACS), ELISA, Q-PCR and killing assays. The antitumor effects of LTF-IC were further analyzed using in vivo experiments employing tumor-bearing human FcγRIIa-transgenic mouse models.ResultsThrough coligation of membrane-bound CD14 and FcγRIIa, LTF-IC rendered TAMs not only M2 to M1 conversion, evidenced by increased tumor necrosis factor α production, down-regulated M2-specific markers (CD206, arginase-1 and vascular endothelial growth factor) and upregulated M1-specific markers (CD86 and HLA-DR) expression, but also potent tumoricidal activity in vitro. LTF-IC administration conferred antitumor protective efficacy and prolonged animal survival in FcγRIIa-transgenic mice, accompanied by accumulation of M1-like macrophages as well as significantly reduced infiltration of immunosuppressive myeloid-derived suppressor cells and regulatory T cells in solid tumor tissues.ConclusionsLTF-IC is a promising cancer therapeutic agent capable of converting TAMs into tumoricidal M1-like cells.


2019 ◽  
Vol 35 (3) ◽  
pp. 211-227 ◽  
Author(s):  
Zhipeng Qi ◽  
Chao Mi ◽  
Fengdi Wu ◽  
Xinxin Yang ◽  
Yanqi Sang ◽  
...  

There are limited studies focused on the precise mechanism of gonadotropin-releasing hormone (GnRH) secretion dysfunction after overexposure to manganese (Mn). The objective of the present study was to explore the mechanism of Mn disruption of GnRH synthesis via nuclear factor erythroid-2-related factor-2 (Nrf2)/metabotropic glutamate receptor-5 (mGluR5)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) signaling pathway in vitro and in vivo. Primary astrocytes were cultured and treated with different doses of Mn, tert-butylhydroquinonet (tBHQ; Nrf2 agonists), 3-[(2-methyl-4-thaizolyl) ethynyl] pyridine (MTEP; mGluR5 inhibitor), and celecoxib (COX-2 inhibitor) to measure the levels of COX-2, mGluR5, Nrf2, and Nrf2 target genes. Mice were randomly divided into 11 groups, of which included the control group, 12.5-, 25-, and 50-mg/kg MnCl2 group, dimethyl sulfoxide (DMSO) group, tBHQ control group, tBHQ pretreatment group, MTEP control group, MTEP pretreatment group, celecoxib control group, and celecoxib pretreatment group. The injection was administered every day for 2 weeks. Then, levels of GnRH, PGE2, COX-2, mGluR5, Nrf2, Nrf2 target genes, and morphological changes in the hypothalamus of mice were measured. Mn reduced protein levels of Nrf2 and mRNA expression of Nrf2 target genes and increased mGluR5, COX-2, PGE2, and GnRH levels. Meanwhile, injury-related histomorphology changes in the hypothalamus of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GnRH secretion through Nrf2/mGluR5/COX-2/PGE2 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document